<div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div>Hi,</div><div><br></div><div>This is a friendly reminder that Géza Tóth will speak this afternoon about "Quantum metrology from a quantum information science perspective". <br></div><div><br></div><div>You can join using the following Zoom link: <a href="https://berkeley.zoom.us/j/96826613566?pwd=MUZtOGllSklFM2d0NGhwaFBqNXhjdz09" target="_blank">https://berkeley.zoom.us/j/96826613566?pwd=MUZtOGllSklFM2d0NGhwaFBqNXhjdz09</a> (due to the default privacy settings you need to sign into your Zoom account before joining).</div><div><br></div><div>After the seminar we will have room for informal discussions as well on gather.town: <a href="https://gather.town/i/q9fj6avP" target="_blank">https://gather.town/i/q9fj6avP</a></div><div><br></div><div>Best,</div><div><br></div><div>András<br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">Gilyén András <<a href="mailto:gilyenandras@gmail.com" target="_blank">gilyenandras@gmail.com</a>> ezt írta (időpont: 2021. febr. 18., Cs, 21:59):<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Hi.</div><div><br></div><div>The next seminar will be given by Géza Tóth (University of the Basque Country).</div><div><br></div><div>The title of the talk is "Quantum metrology from a quantum information science perspective", and the abstract can be found at the bottom of the e-mail. <br></div><div><br></div><div>Based on the success of the after-seminar gathering we will once again use gather.town to continue discussions after the seminar and the "plenary questions" ended. I will send the link one day before the seminar.<br></div><div><br></div><div>Best wishes,</div><div><br></div><div>András</div><div><br></div><div><u><b>Abstract:</b></u> We discuss how quantum systems can be used for parameter estimation. We present the central notions of the field such as the quantum Fisher information and the Cramér-Rao bound. We review basic findings on how the precision of the parameter estimation scales with the number of particles in a linear interferometer. The best scaling achievable is quadratic, however, quantum entanglement is needed to surpass the linear or shot-noise scaling. Finally, we explain how uncorrelated noise limits the highest achievable precision in practice. We present the theory of quantum metrology based on concrete setups using highly entangled quantum states, such as Greenberger-Horne-Zeilinger states, spin squeezed states, Dicke states and singlet states.<br><br>The talk is based on: G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, J. Phys. A: Math. Theor. 47, 424006 (2014), special issue "50 years of Bell's theorem"; <a href="http://optics.szfki.kfki.hu/~toth/Publications/JPHYSA14.pdf" target="_blank">http://optics.szfki.kfki.hu/~toth/Publications/JPHYSA14.pdf</a></div></div>
</blockquote></div></div>
</div></div>