
Programming MPC Systems
White Paper

Maximum Performance Computing
Maximum Performance Computing (MPC)
changes the classical computer science optimiza-
tion from ease-of-programming to maximizing
performance and minimizing total cost of comput-
ing. We maximize performance by constructing
compute engines to generate one result per clock
cycle, wherever possible. Ease-of-programming
is still important but takes second place to
performance, computational density and power
consumption.
As such MPC focuses on mission critical, long run-
ning computations with large datasets and com-
plex numerical and intense statistical content. At
Maxeler we drive MPC via ‘Multiscale Dataflow
Computing’. This white paper describes the com-
ponents of MPC and illustrates how we program
MPC dataflow computers.
One Maxeler Dataflow Engine (DFE) combines
104 arithmetic units with 107 bytes of local fast
SRAM (FMEM) and 1011 bytes of 6-channel large
DRAM (LMEM). MaxelerOS allows the DFEs and
CPU to run in parallel, so while the DFEs are pro-
cessing the data, the CPU performs the non-time-
critical parts of an application.
Our MPC programming environment comprises
of MaxCompiler, MaxelerOS (running within Linux
and DFEs themselves), MaxIDE, our fast DFE
software simulator, and a comprehensive debug
environment.

CPUs talking to DFEs
In a Maxeler MPC system, the CPUs are in con-
trol and drive the computations on the DFEs. The
SLiC (Simple Live CPU) interface is Maxeler’s
API for CPU-DFE integration: at its simplest level
DFE computation can be added to an application

Figure 1: 1U rackable MPC-X node with 8
Dataflow Engines (DFEs) and Infiniband intercon-
nect for communicating with standard CPU nodes
running Linux via network switches.

Skins

SLiC

MaxelerOS

Linux

Application
(C/C++, Python, R, MATLAB)

Interconnect Dataflow
Engines (DFEs)

CPUs

.max
-file

MaxCompiler

Dataflow
Program
(Java/MaxJ)

Compile

Load

Figure 2: MPC System Architecture with Linux-
based software stack (SLiC, Skins, MaxelerOS).

with a single function call, while for more fine-
grained control SLiC provides an “action”-based
interface. SLiC interface calls are automatically
generated from the corresponding DFE program
pieces. SLiC interfaces allow DFE programs to be
shared and reused in library and application set-
tings, such as MATLAB, spreadsheets, etc.
SLiC Skins provide bindings for a range of lan-
guages including C/C++, R, Python, and MATLAB.
Skins enable users of these environments to ac-
cess DFEs without needing to learn how to pro-
gram DFEs in order to get started.

Using DFEs
There are two parts to an MPC application: a CPU
and a DFE component, as sketched in Figure 2.
DFE configurations are created using Maxeler’s
MaxCompiler and compiled to a .max file. The
.max file contains automatically generated SLiC
functions simplifying integration of DFE function-

1 from Convolve import ”∗” # Import the Convolve DFE
2
3 N = 1000 # initialize data e.g. read from file
4 weights = load weights(N, N)
5 x = load 2d arr x(N, N)
6 y = load 2d arr y(N, N)
7
8 # load weights into DFE Memory
9 Convolve loadWeights(N, N, weights)

10
11 # With weights now in DFE, can convolve many datasets
12 s = Convolve(N, N, x, y)
13 t = Convolve(N, N, x, s)

Figure 3: DFE Convolution from Python Skin.

June 19, 2013 www.maxeler.com 1

http://www.maxeler.com

Programming MPC Systems
White Paper

Figure 4: MaxIDE provides an integrated GUI to
aid development of both DFE and CPU code.

ality into the CPU source, which can itself be writ-
ten in a variety of languages. Figure 3 shows how
a DFE can be used from Python. SLiC has cre-
ated a Python Skin, Convolve.py, that defines
two auto-generated function calls: one function
loads the DFE Memory, the other streams data
from the CPU over the interconnect to the DFE,
through the convolution computation, and back to
the CPU over the interconnect.

Development Tool Flow
The DFE part of an accelerated solution itself con-
tains two components: one or more Kernels, re-
sponsible for the data computations; and a single
Manager, which orchestrates global data move-
ment for the CPUs, DFEs and Kernels+Memory in-
side. Hence, accelerating an application requires
the user to write three program parts:
• Kernel(s)

• A Manager

• and a CPU application
The developer creates the Kernel and the Man-
ager by writing programs in MaxJ: an extended
form of Java adding operator overloading. Using
MaxCompiler requires only minimal familiarity with
Java. A developer executes a MaxCompiler-based
program to produce a “.max file” containing the
DFE configuration, meta-data and SLiC functions.
The CPU application is compiled and linked with
the .max file, SLiC and MaxelerOS, to create the
application executable; this executable includes
all the code necessary to utilize the DFE, such
as configuring DFEs and setting up the dataflows
(R)DMAs between CPUs and DFEs, and configu-

rations for memory controllers for DFE memories.
MaxelerOS (within Linux) and SLiC connect the
software and DFE parts of an application and pro-
vide C/C++ or other skins interfaces to the user.
MaxIDE, based on the Eclipse open source plat-
form, provides a complete MaxCompiler develop-
ment environment with MaxJ/Java syntactic code
assistance and automated build and run tools; Fig-
ure 4 shows a screenshot of MaxIDE. Both DFE
and CPU code can be developed and run from
MaxIDE.

Kernels
MaxCompiler kernels describe computations
structurally (computing in space), rather than
specifying a sequence of processor instructions
(computing in time). A kernel’s dataflow is
described by a graph of computational cores:

Computation cores perform arithmetic
and logic operations (e.g., +,*,<,&) as
well as type casts to convert between
floating point, fixed point and integer
variables.

Value cores provide parameters which
are either constant or set by the CPU
application at runtime.

Stream ‘offsets’ allow access to el-
ements at different positions in the
dataflow.

Multiplexer cores are for making deci-
sions.

Counter cores are for catching specific
dataflow positions such as boundary
conditions.

I/O cores connect the kernel to the man-
ager and serve for streaming data in and
out.

Figure 5 shows the kernel code for a 3-point mov-
ing average over N values with zero at the bound-
aries:

yi =
{

(xi−1 + xi + xi+1)/3 if 0 < i < N−1
0 otherwise

We define inputs and outputs and the compu-
tations to go from inputs to outputs. Dataflow

2 www.maxeler.com June 19, 2013

http://www.maxeler.com

Programming MPC Systems
White Paper

DFEType type = dfeFloat(8,24);
DFEVar x = io.input(”x” , type);

DFEVar x prev = stream.offset(x, -1);
DFEVar x next = stream.offset(x, +1);

DFEVar cnt = control.count.simpleCounter(32, N);
DFEVar valid = (cnt > 0) & (cnt < (N-1));

DFEVar y = valid ? (x prev + x + x next) / 3.0 : 0.0;
io .output(”y” , y, type);

Figure 5: Moving average kernel description.

streams are represented as DFEVars and used via
regular Java expressions and function calls.
Figure 6 depicts the kernel graph for the moving
average, split into a data part (right-hand side) and
a logic part (left-hand side). Computation happens
while the data flows through the network without
any dynamic events. The computations are all de-
pendent on each other, while still running fully in
parallel. Consequently, we can estimate the per-
formance of the Kernel by dividing the amount of
data that needs to flow through the kernel with the
expected data rate. Being able to accurately pre-
dict performance of implementation options makes
it easy to explore optimizations in a spreadsheet
and then implement the best one, which is hard to
do on classical CPU systems.

y

/

x

­1 +1

+

+

cnt

mux10

3

control data

0

cnt>0 & cnt<(N­1)

valid

output

input

Figure 6: Graph for the moving average kernel.

Manager m = new Manager(params);
Kernel k = new MovingAverageKernel(

m.makeKernelParameters());
m.setKernel(k);
m.setIO(link(”x” , CPU),

link (”y” , CPU));
m.createSLiCInterface();
m.build() ;

Figure 7: Manager for moving average.

Manager
The manager wraps kernels and orchestrates their
data choreography. Manager functions include
user configurable I/O streams to CPUs (R)DMA, to
other DFEs in the node, and to the off-chip Large
Memory. The manager program gets “executed”
at runtime by MaxelerOS, partly running on CPUs
and partly running on the DFE itself.
Figure 7 shows the configuration of a manager,
for the moving average kernel, that connects its
input and output streams to the CPU. The call
to createSLiCInterface() generates a simple
engine interface; more complex engine interfaces
can be described by the programmer, and a DFE
might have several engine interfaces to handle dif-
ferent usage models. When the Kernel(s) and
Manager are compiled with MaxCompiler, soft-
ware functions are generated for each engine in-
terface and included in the .max file. These engine
interface functions can be called from CPU code
written in C/C++, or from other languages such as
Python and MATLAB via the SLiC Skins interface.
MaxIDE allows the user to program the manager
in the same environment as the application ker-
nels. The manager program typically instantiates
the kernel(s) and manager and configures them,
then the Manager Compiler turns this configura-
tion into a corresponding .max file.

CPU Application
The CPU application sits on top of SLiC and Max-
elerOS (see Figure 2). MaxIDE can automatically

const int N = 80;
float x [80], y [80];
for (int i=0; i<N; ++i)

x[i] = 10.0 ∗ rand() / RAND MAX;

// This SLiC function is generated automatically by MaxCompiler.
MovingAverage(N, x, y);

Figure 8: CPU application for the moving average
example (fragment).

June 19, 2013 www.maxeler.com 3

http://www.maxeler.com

Programming MPC Systems
White Paper

debug.printf (cnt < 8,
”%d: sel=%d x=%.2f y=%.2f\n”,
cnt, sel , x, y) ;

Figure 9: Debug code for the moving average ex-
ample.

manage a C framework for the CPU code, Figure 8
shows a fragment of the C code for the moving
average example with a call to the SLiC function
MovingAverage. This figure and the Python ex-
ample of Figure 3 show how easily the DFE can
be integrated into a CPU application.

Simulation and Debugging
Kernel designs can be rapidly developed by simu-
lating first in software and then building DFE con-
figurations to run at maximal speed. Maxeler’s fast
Simulator allows us to run DFE programs in soft-
ware on the CPU.
A key feature for debugging is a DFE printf func-
tion, analogous to the C language version, which
traces stream values during execution. DFE printf
can be used in both simulation and on the DFE,
and the amount of print output can be controlled
by a DFEVar condition. Figure 9 shows a code
example for DFE printf in Figure 5.

Optimization
Each line in a Kernel program generates pieces
of dataflow computing. Since we compute in
space, each line creates certain resources. DFE
resource annotation brings this information back
into the source code on a line-by-line basis. Fig-
ure 10 shows an example of this. For example,
resources are conserved by preferring integer op-
erations over floating point, and converting float-

LUTs FFs BRAMs DSPs FilterKernel.maxj
665 847 9.5 2 resources used by this file

0.22% 0.14% 0.89% 0.10% % of available
int len = 10000;
int bits = MathUtils.bitsToAddress(len);
DFEFloat type = dfeFloat(8, 24);

9 32 0.0 0 DFEVar x = io.input("x", type);
1 32 0.0 0 DFEVar y = io.input("y", type);

80 46 9.5 0 Memory<DFEVar> w = mem.alloc(type, len);
w.mapToCPU("weights");

39 45 0.0 0 DFEVar addr = simpleCounter(bits,len);

536 692 0.0 2 DFEVar sum = x + y * w.read(addr);
io.output("s", sum, dfeFloat(8, 24));

Figure 10: Resource usage report. LUTs, FFs,
DSPs (multiply/add units) are fundamental re-
sources used to construct dataflow cores.

Figure 11: CPU and DFE Profiling.

ing point values to fixed point where feasible, using
less bits to represent numbers, and sharing oper-
ators. The balance of parallelism vs precision can
be carefully adjusted using the capacity usage as
a guide.
Latency annotation reports have a similar layout
to resource reports, but show line-by-line detail of
how long (clock cycles or nanoseconds) it takes
data to flow through the DFE. This is useful for net-
work applications where nanoseconds can matter,
and turnaround time between data arrival and de-
parture is crucial.
Clock cycles can vary from Kernel to Kernel.
Timing reports detail which clock frequency was
achieved and where the current bottlenecks are
to achieve higher clock frequencies. Bottlenecks
arise from local crowding of signals and computa-
tion, e.g. by reading a DFEVar many times, cre-
ating many circular constructs, or just pushing to-
wards the limits of the DFE space limit.
The interaction of the CPU and DFE is also impor-
tant when optimizing an application: the CPU and
DFE should run simultaneously in parallel for max-
imum performance, with no idle time on either side.
SLiC includes tools which instrument the code and
produce event flow graphs; Figure 11 shows an ex-
ample of a profiling graph. Visualization of how the
runtime execution is spread between the CPU and
DFE helps identify under-utilized compute band-
width.

Training and Education
Maxeler Technologies provides MPC educational
material and workshops, using MaxCompiler and
also delivers complete Multiscale Dataflow solu-
tions.

4 www.maxeler.com June 19, 2013

http://www.maxeler.com

	Maximum Performance Computing
	CPUs talking to DFEs
	Using DFEs
	Development Tool Flow
	Kernels
	Manager
	CPU Application
	Simulation and Debugging
	Optimization
	Training and Education

