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Motivation 

• Programmability of network data plane 
– P4 code as a high level abstraction 

• Different hardware targets 
– CPUs, NPUs, FPGA, etc. 

• Create a compiler that separates hardware 
dependent and independent parts 
– Easily retargetable P4 compiler 
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Multi-target Compiler Architecture 
• Linking two carefully separated 

components of C source code 
 

• Hardware-independent „Core” 
– generated by a compiler 
– based on the HLIR 

• Hardware-dependent „HAL” 
– static library 
– written by a hw-expert 

• Well-defined interface between 
them 
– mostly with C function prototypes 

 
 

• PROs 
– much simpler compiler 
– modularity = better maintainability 
– exchangeable HAL = retargetable switch 

(without rewriting a single line of code) 
– HAL is not affected by changes in the P4 

program 
 

• CONs 
– performance questions 
– hardware-dependent parts are not 

amenable to protocol-dependent 
optimization 

– communication overhead between the 
components (C function calls) 



The „Core” 

Data structures used:  
• data structures declared in the HAL but initialized in the core 

• stateful memory configuration 

• the same idea is used for sharing information on header types 
• we could use macros instead, but arrays are more readable and they are optimized away 

by the C compiler (via constant propagation)  

Packet parsing: 
• Lightweight Parsed Representation 
• Determining the positions and 

types of headers in the packet 
• No "real" parsing or field 

extraction (we do it lazy) 

Actions and controls: 
• Fields are extracted when needed 
• In-place field modifications 
• Controls and actions translated to C 

functions 
• Key calculation for lookup tables 



Hardware Abstraction Library 
• Low-level generic C API for networking hardwares 

 
• A target specific HAL implements: 

– states (tables, counters, meters etc.) 
– related operations (table insert/delete/lookup, 

counter increment, etc.) 
– packet RX and TX 
– primitive actions (header-related + digests) 
– helpers for primitive actions (field-related) 

• implemented as macros for performance reasons 

add_header 
add_header(packet_descriptor_t* p, header_reference_t h) 
 
remove header 
remove_header(packet_descriptor_t* p, header_reference_t h) 

 
modify_field 
modify_field_to_const32(packet_descriptor_t* p,  

           field_reference_t f, uint32_t val) 

modify_field_to_const(packet_descriptor_t* p,  

           field_reference_t f, uint8_t *src, int srclen) 

modify_field_to_field(packet_descriptor_t* p,  

           field_reference_t dstf, field_reference_t srcf) 

 

generate digest (message to the control plane) 
generate_digest(backend bg, char* name, int receiver,          

 struct type_field_list* digest_field_list) 

 
 
Table type and the table operations (e.g. for ternary tables): 
typedef struct lookup_table_s; 

 
naive_ternary_create(uint8_t keylen, uint8_t max_size); 

naive_ternary_destroy(ternary_table* t); 

naive_ternary_add(ternary_table* t, uint8_t* key, uint8_t* mask, uint8_t* value); 

naive_ternary_lookup(ternary_table* t, uint8_t* key); 



HAL for Intel DPDK 
• Reuses the current LPM and HASH table implementations of DPDK 

 
• Atomic integers for counters and meters 

 
• NUMA support 

– Two instances of each table on each socket - lock-free solution 
     - active/passive instances 
     - lcore always turns to its socket's instance 

– Counter instances for each lcore on the corresponding socket 
     - With the aim of keeping them in CPU cache 



Evaluation setup 

• Intel XEON E5-2630 4x8 cores 2.3GHz,8x4GB DDR3 SDRAM 

• dual 10 Gbps NIC (Intel 82599ES) 



Performance test 
L2 example 

• Simple L2 forwarding 
with mac learning 
 

• Two lookup tables 
– smac & dmac 

 
• Generating digests 

 
• Demo controller fills 

tables smac and dmac  
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Performance test 
L3 example 

• Simple L3 forwarding 
example 
 

• Three lookup tables 
– Ipv4_lpm, nexthops, 

send_frame 

 
• Demo controller fills 

tables in advance 
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Conclusion & Future Work 
• Lessons learnt 

– not easy to find the boundary of the HAL 
• compared to the first version, our HAL has become thinner 

– P4 primitive actions are not fully implemented in the HAL, in most cases only small hw-dependent helper 
functions are defined 

• As a PRO: the hand-written code is smaller 

– inspection of the assembly code is needed to optimize the switch program 

 
• Current state 

– Our compiler separates the hw dependent and independent functionalities 
– Supports P4 1.0 specification (almost complete) 
– HAL for Intel DPDK is under testing and performance tuning 

 
• Future work: 

– HAL for Freescale and other NPUs 
– Code optimization to get better performance 
– Performance and scalability tests 
– First public release of the compiler 

 



Thank you for you attention! 

 

 

The first release of our P4 compiler will soon be available at 
http://p4.elte.hu 
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