
High-Speed Forwarding: A P4 Compiler with a
Hardware Abstraction Library for Intel DPDK

Sándor Laki

Eötvös Loránd University
Budapest, Hungary

lakis@elte.hu

Motivation

• Programmability of network data plane
– P4 code as a high level abstraction

• Different hardware targets
– CPUs, NPUs, FPGA, etc.

• Create a compiler that separates hardware
dependent and independent parts
– Easily retargetable P4 compiler

Switch core implementation

Multi-target Compiler Architecture
Control plane P4 program

Core
compiler

Slow Path

Fast Path

Hardware Abstraction Library (HAL)

Low-level Hardware „SDK”

HAL API

Low-level Switch API

C code

Control plane is aware of
the P4 program

Switch core compiled
from a P4 program

Hardware independent

Using HAL API to access
the hardware

Target specific libraries

Implementing lookup
tables, primitive actions,
etc.

Low level C API

Switch core implementation

Multi-target Compiler Architecture
Control plane P4 program

Core
compiler

Slow Path

Fast Path

Hardware Abstraction Library (HAL)

Low-level Hardware „SDK”

HAL API

Low-level Switch API

C code

Control plane is aware of
the P4 program

Switch core compiled
from a P4 program

Hardware independent

Using HAL API to access
the hardware

HAL for Ericsson NPU

 NPU hardware

Target specific libraries

Implementing lookup
tables, primitive actions,
etc.

Low level C API

Switch core implementation

Multi-target Compiler Architecture
Control plane P4 program

Core
compiler

Slow Path

Fast Path

Hardware Abstraction Library (HAL)

Low-level Hardware „SDK”

HAL API

Low-level Switch API

C code

Control plane is aware of
the P4 program

Switch core compiled
from a P4 program

Hardware independent

Using HAL API to access
the hardware

HAL for Ericsson NPU

 NPU hardware

HAL for Freescale NPU

 NPU hardware

Target specific libraries

Implementing lookup
tables, primitive actions,
etc.

Low level C API

Switch core implementation

Multi-target Compiler Architecture
Control plane P4 program

Core
compiler

Slow Path

Fast Path

Hardware Abstraction Library (HAL)

Low-level Hardware „SDK”

HAL API

Low-level Switch API

C code

Control plane is aware of
the P4 program

Switch core compiled
from a P4 program

Hardware independent

Using HAL API to access
the hardware

HAL for Ericsson NPU

 NPU hardware

HAL for Freescale NPU

 NPU hardware

HAL for Intel DPDK

 Commodity hardware

Target specific libraries

Implementing lookup
tables, primitive actions,
etc.

Low level C API

Multi-target Compiler Architecture
• Linking two carefully separated

components of C source code

• Hardware-independent „Core”
– generated by a compiler
– based on the HLIR

• Hardware-dependent „HAL”
– static library
– written by a hw-expert

• Well-defined interface between
them
– mostly with C function prototypes

• PROs
– much simpler compiler
– modularity = better maintainability
– exchangeable HAL = retargetable switch

(without rewriting a single line of code)
– HAL is not affected by changes in the P4

program

• CONs
– performance questions
– hardware-dependent parts are not

amenable to protocol-dependent
optimization

– communication overhead between the
components (C function calls)

The „Core”

Data structures used:
• data structures declared in the HAL but initialized in the core

• stateful memory configuration

• the same idea is used for sharing information on header types
• we could use macros instead, but arrays are more readable and they are optimized away

by the C compiler (via constant propagation)

Packet parsing:
• Lightweight Parsed Representation
• Determining the positions and

types of headers in the packet
• No "real" parsing or field

extraction (we do it lazy)

Actions and controls:
• Fields are extracted when needed
• In-place field modifications
• Controls and actions translated to C

functions
• Key calculation for lookup tables

Hardware Abstraction Library
• Low-level generic C API for networking hardwares

• A target specific HAL implements:

– states (tables, counters, meters etc.)
– related operations (table insert/delete/lookup,

counter increment, etc.)
– packet RX and TX
– primitive actions (header-related + digests)
– helpers for primitive actions (field-related)

• implemented as macros for performance reasons

add_header
add_header(packet_descriptor_t* p, header_reference_t h)

remove header
remove_header(packet_descriptor_t* p, header_reference_t h)

modify_field
modify_field_to_const32(packet_descriptor_t* p,

 field_reference_t f, uint32_t val)

modify_field_to_const(packet_descriptor_t* p,

 field_reference_t f, uint8_t *src, int srclen)

modify_field_to_field(packet_descriptor_t* p,

 field_reference_t dstf, field_reference_t srcf)

generate digest (message to the control plane)
generate_digest(backend bg, char* name, int receiver,

 struct type_field_list* digest_field_list)

Table type and the table operations (e.g. for ternary tables):
typedef struct lookup_table_s;

naive_ternary_create(uint8_t keylen, uint8_t max_size);

naive_ternary_destroy(ternary_table* t);

naive_ternary_add(ternary_table* t, uint8_t* key, uint8_t* mask, uint8_t* value);

naive_ternary_lookup(ternary_table* t, uint8_t* key);

HAL for Intel DPDK
• Reuses the current LPM and HASH table implementations of DPDK

• Atomic integers for counters and meters

• NUMA support

– Two instances of each table on each socket - lock-free solution
 - active/passive instances
 - lcore always turns to its socket's instance

– Counter instances for each lcore on the corresponding socket
 - With the aim of keeping them in CPU cache

Evaluation setup

• Intel XEON E5-2630 4x8 cores 2.3GHz,8x4GB DDR3 SDRAM

• dual 10 Gbps NIC (Intel 82599ES)

Performance test
L2 example

• Simple L2 forwarding
with mac learning

• Two lookup tables
– smac & dmac

• Generating digests

• Demo controller fills

tables smac and dmac
8000

8500

9000

9500

10000

10500

64 128 256 512

Different frame sizes
Single core setup

Mbps

Performance test
L3 example

• Simple L3 forwarding
example

• Three lookup tables
– Ipv4_lpm, nexthops,

send_frame

• Demo controller fills

tables in advance
0

5000

10000

15000

64 128 256 512

Different frame sizes
Single core setup

Mbps

Conclusion & Future Work
• Lessons learnt

– not easy to find the boundary of the HAL
• compared to the first version, our HAL has become thinner

– P4 primitive actions are not fully implemented in the HAL, in most cases only small hw-dependent helper
functions are defined

• As a PRO: the hand-written code is smaller

– inspection of the assembly code is needed to optimize the switch program

• Current state

– Our compiler separates the hw dependent and independent functionalities
– Supports P4 1.0 specification (almost complete)
– HAL for Intel DPDK is under testing and performance tuning

• Future work:

– HAL for Freescale and other NPUs
– Code optimization to get better performance
– Performance and scalability tests
– First public release of the compiler

Thank you for you attention!

The first release of our P4 compiler will soon be available at
http://p4.elte.hu

The team: Dániel Horpácsi, Róbert Kitlei, Sándor Laki, Dániel Leskó, Máté Tejfel, Péter Vörös

http://p4.elte.hu/

