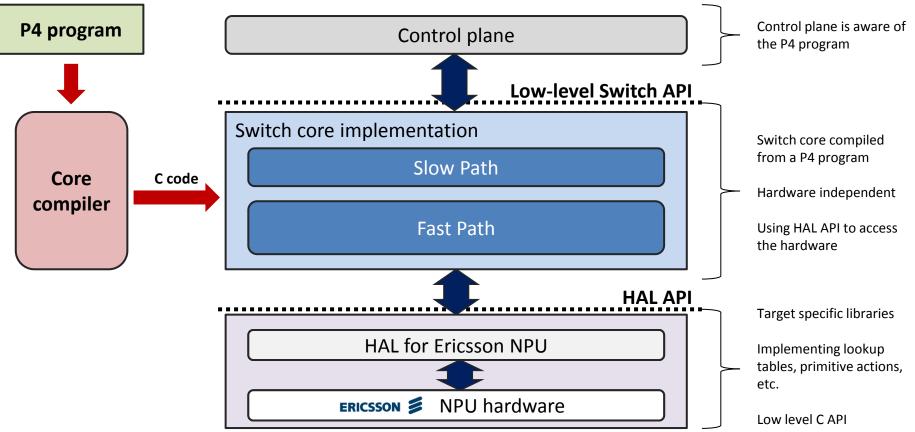
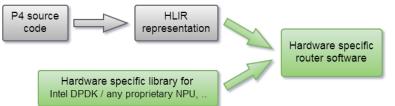

High-Speed Forwarding: A P4 Compiler with a Hardware Abstraction Library for Intel DPDK


Sándor Laki Eötvös Loránd University Budapest, Hungary Iakis@elte.hu

Motivation

- Programmability of network data plane
 - P4 code as a high level abstraction
- Different hardware targets
 CPUs, NPUs, FPGA, etc.
- Create a compiler that separates hardware dependent and independent parts
 - Easily retargetable P4 compiler



- Linking two carefully separated components of C source code
- Hardware-independent "Core"
 - generated by a compiler
 - based on the HLIR
- Hardware-dependent "HAL"
 - static library
 - written by a hw-expert
- Well-defined interface between them
 - mostly with C function prototypes

• PROs

- much simpler compiler
- modularity = better maintainability
- exchangeable HAL = retargetable switch (without rewriting a single line of code)
- HAL is not affected by changes in the P4 program
- CONs
 - performance questions
 - hardware-dependent parts are not amenable to protocol-dependent optimization
 - communication overhead between the components (C function calls)

The "Core"

Packet parsing:

- Lightweight Parsed Representation
- Determining the positions and types of headers in the packet
- No "real" parsing or field extraction (we do it lazy)

Actions and controls:

- Fields are extracted when needed
- In-place field modifications
- Controls and actions translated to C functions
- Key calculation for lookup tables

Data structures used:

- data structures declared in the HAL but initialized in the core
 - stateful memory configuration
- the same idea is used for sharing information on header types
 - we could use macros instead, but arrays are more readable and they are optimized away by the C compiler (via constant propagation)

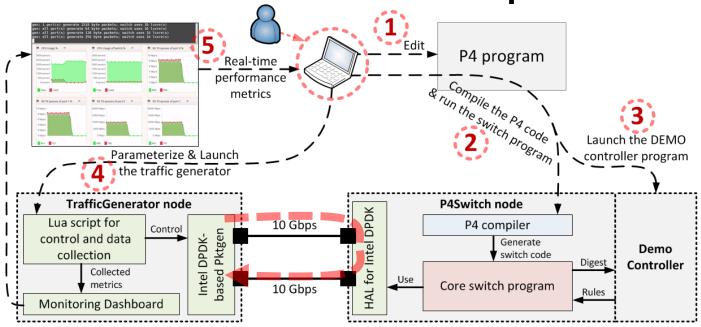
Hardware Abstraction Library

- Low-level generic C API for networking hardwares
- A target specific HAL implements:
 - states (tables, counters, meters etc.)
 - related operations (table insert/delete/lookup, counter increment, etc.)
 - packet RX and TX
 - primitive actions (header-related + digests)
 - helpers for primitive actions (field-related)
 - implemented as macros for performance reasons

add_header

add_header(packet_descriptor_t* p, header_reference_t h)

remove header

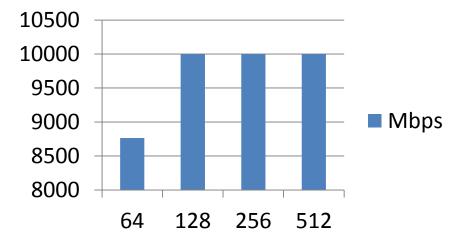

remove_header(packet_descriptor_t* p, header_reference_t h)

modify_field

HAL for Intel DPDK

- Reuses the current LPM and HASH table implementations of DPDK
- Atomic integers for counters and meters
- NUMA support
 - Two instances of each table on each socket lock-free solution
 - active/passive instances
 - lcore always turns to its socket's instance
 - Counter instances for each lcore on the corresponding socket
 - With the aim of keeping them in CPU cache

Evaluation setup

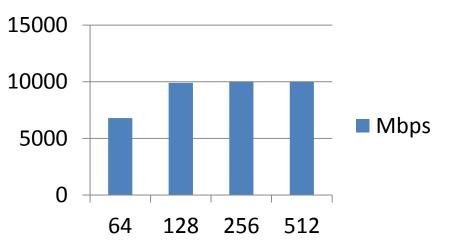

- Intel XEON E5-2630 4x8 cores 2.3GHz,8x4GB DDR3 SDRAM
- dual 10 Gbps NIC (Intel 82599ES)

Performance test L2 example

• Simple L2 forwarding with mac learning

Different frame sizes Single core setup

- Two lookup tables
 smac & dmac
- Generating digests
- Demo controller fills tables smac and dmac



Performance test L3 example

• Simple L3 forwarding example

Different frame sizes Single core setup

- Three lookup tables
 - Ipv4_lpm, nexthops, send_frame
- Demo controller fills tables in advance

Conclusion & Future Work

- Lessons learnt
 - not easy to find the boundary of the HAL
 - compared to the first version, our HAL has become thinner
 - P4 primitive actions are not fully implemented in the HAL, in most cases only small hw-dependent helper functions are defined
 - As a PRO: the hand-written code is smaller
 - inspection of the assembly code is needed to optimize the switch program
- Current state
 - Our compiler separates the hw dependent and independent functionalities
 - Supports P4 1.0 specification (almost complete)
 - HAL for Intel DPDK is under testing and performance tuning
- Future work:
 - HAL for Freescale and other NPUs
 - Code optimization to get better performance
 - Performance and scalability tests
 - First public release of the compiler

Thank you for you attention!

The first release of our P4 compiler will soon be available at <u>http://p4.elte.hu</u>

The team: Dániel Horpácsi, Róbert Kitlei, Sándor Laki, Dániel Leskó, Máté Tejfel, Péter Vörös