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New additions to P4 v1.1

* Feature enhancement

— set_metadata( ) taking expression
* Enables TLV-style header parsing

— modify_field() taking expression

* Avoids proliferation of primitive actions, keeping the language clean and simple

— Proper data types and type-checking system
e Action parameters are now typed

* Unified way of embracing functional heterogeneity

— extern types and instances

* Improved clarity and understandability of the spec

— Sequential-execution semantics



Concepts we reviewed, but didn’t add to v1.1

* Architecture-language separation
— Unified way of embracing architectural heterogeneity
— Identify P4-programmable modules (whiteboxes) and declare their signatures

e Standard library
— Primitive actions
— Standard extern types
» Stateful objects (counter, meter, and register)
e Other objects that are subject to compile-time resource allocation

* Support for de-parser specification

— Inverse of packet parsing



Primary goals for post-1.1 activity

* Architecture-language separation
— Reuse the same compiler for new targets

* Portability
— Reuse the same P4 code for new targets

 Composability
— Write P4 code (library) once and reuse it many times



How?

* Architecture-language separation
— Introduce architecture-modeling constructs in P4

* Portability
— Standard architecture
— Standard library
 Composability

— Introduce new constructs for namespace and
parameterization



Sample: Architecture-language separation

Switch Architecture Specification Switch Implementation (by user)
// “arch.p4” // Program written by user
// Architecture declaration #include “arch.p4”

parser P<H>(in packet_in packet,

out H headers); parser MyParser(...) { ... }

control Ingress<H>( control MylIngress(...) { ... }

Tt ] hEsdEs. control MyDeparser(...) { ... }

in intrinsic_metadata_in imi,

out intrinsic_metadata_out imo // Top-level element instantiation
); Switch(MyParser(),
control Deparser<H>(in H headers, Mylngress(),
out packet_out packet); MyDeparser()) MySwitch;

package Switch<H>(Parser<H> p,
Ingress<H> ingress,
Deparser<H> deparser);



Fitting all these together
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Other goals for post v1.1

e Support for ...
— Incremental parsing
— Deparser specification
— Compile-time table population
— Compile-time default-action specification

e Common control-plane API generation convention



Sub-group approach for p4-design

* Potential sub-groups
— Language / Standard library
— Standard architecture
— APIl-generation convention

* Each sub-group could work with its own schedule and logistics

— Conf calls, in-person meetings, or both
* Monthly in-person plenary meetings

* Seeking representatives who'd like to lead sub-group
activities



Update on open-source contributions
e Behavioral Model v2 (BMv2)

— Re-configurable fixed code; no code generation
— Easier to add features, maintain, and understand
— Architecture independent

— Better logging and great test coverage
— Decent performance

* Packet Test Framework (PTF)
— Replaces OF Test Framework
— Light weight, more features (network-level testing, etc.)



Update on advanced use cases

* In-band Network Telemetry

— Full spec & prototype available
e http://p4.org/p4/inband-network-telemetry/

* P4 code, mininet-based test framework, and real-time data visualizer
* More in the pipeline

— L4 load balancing, in-network Paxos, utilization-aware
routing, etc.

* P4 code examples (assignments from P4 tutorials)
— Source routing, flowlet switching, etc.



