
P4 Integration into Spider SystemC Model

Gordon Bailey

Supervised by Dr. Samar Abdi

1



Contents

• P4 Compiler Overview

• P4 Compiler Modifications

• Spider SystemC Model Modifications

• P4 Mininet Demo

• Spider SystemC-P4 integration Demo



P4 Compiler Overview and Modifications

3



P4 Compiler Overview

 Written entirely in Python

 IR is a collection of python data structures in memory

 Code generation is done using a templating library

 Currently generating C code

 Could be modified to generate code in any desired language

 P4 generated code is compiled into a set of static libraries

 P4 generated libraries and headers are imported into the SystemC project

4



P4 Compiler Overview

5

P4 

Compiler

code.p4 code.c c

Compiler

lib.a

c

Compiler
c++

Compiler

main.c P4 Soft 

Switch

spider.

cpp
P4 

Spider 

Model



P4 Compiler

6

//:: for header in headers:

void _extract_${header}(uint8_t *dst, uint8_t *hdr) {

uint8_t *src;

//:: for field in header:

//:: data_type = field["data_type"]

//:: byte_offset_phv = field["byte_offset_phv"]

//:: byte_offset_hdr = field["byte_offset_hdr"]

//:: bit_offset_hdr = field["bit_offset_hdr"]

//:: mask = field["mask"]

//:: byte_width_phv = field["byte_width_phv"]

//:: width = field["bit_width"]

src = hdr + ${byte_offset_hdr};

//:: if data_type == "uint32_t":

EXTRACT_UINT32(dst, src, ${bit_offset_hdr}, ${width});

//:: elif data_type == "byte_buf_t":

EXTRACT_BYTE_BUF(dst, src, ${byte_width_phv});

//:: #endif

dst += ${byte_width_phv};

//:: #endfor

}

//:: #endfor

This is a simplified example of 

one of the templates used in the 

compiler backend



P4 Compiler Modifications

 Additional templates have been added to the P4 compiler backend to 

expose an API suitable for use in the SystemC model

 p4_init

 p4_do_parsing

 p4_do_table_application

 p4_do_deparsing

7



P4 Structure

8

The P4 model looks like this



P4 Structure

9

With the functionality being extracted as follows

p4_do_parsing p4_do_table_application p4_do_deparsing



SystemC Model Modifications

10



SystemC Modifications

Modifications have been made to 

the following modules

• Packet Generator

• Internal Packet Representation

• PDM

• PCL

• TEU User Application

• PDE



Modifications to Packet Generator 

 The packet generator has been modified so that it reads from a standard 

libpcap capture file, and inserts the captured packets one by one into the 

SystemC model’s ingress.

12



Modifications to Internal Packet Representation

 The internal representation of a packet has been modified to use the 

structure generated by the P4 code

 Accesses to metadata fields can transparently write through to 

underlying P4 structure

 This has been implemented for some, but not all metadata fields

13



Modifications to PDM

 The PDM has been modified to perform splitting of the incoming packets 

into header and payload parts

 Assumes Ethernet + IPV4

 Sends first 34 bytes to PCL, remaining bytes to IDA

14



Modifications to PCL

 The PCL has been modified to call p4_do_parsing to generate a 

structured representation of the header contents

 Also generates any metadata specified in the P4 program

 The P4 generated structured representation is integrated into the pre-

existing internal packet representation

15



Modifications to TEU User Application

 A new user application was created which simply calls 
p4_do_table_applications.

 The p4 routine updates header and metadata field values as specified by 

the P4 program and Match-Action table populations.

16



Modifications to PDE

 The PDE has been modified to call the p4_do_deparsing function

 The result is then concatenated with the payload previously written to the 

IDA

 The resulting complete packet is then logged in a standard libpcap

format

17



P4 Demo

18



P4 Demo

 The P4 compiler includes a simple demo application

 Creates an Ethernet+IPV4 switch inside a simple Mininet topology

 Harpoon traffic generator will create test traffic

19

Switch

(P4)

Client 1 Server 1

Mininet

Client N Server N



P4 Demo

 The Match-Action tables of the P4 soft switch are populated using a 

Remote Procedure Call API

 Can be filled dynamically at run time, for this demo they will be 

populated at the start

20

Switch (P4)

Match-Action 

Tables

RPC Client

remote procedure call



P4 Demo

 Once the topology is created and the Match-Action tables are populated, 

traffic within the network is captured

 The input and output at each of the switch’s interfaces is captured 

separately

 The input streams and output streams are then merged chronologically

21

Switch

(P4)
Host 1 Host N

Mininet

Output N

Input N

Input 1

Output 1



P4 Demo

22

input_N.pcap

input_1.pcap

input.pcap

outputN.pcap

output1.pcap

expected

output.pcap

mergecap

mergecap



Spider – P4 Integration Demo

23



Spider Demo

 The input and output captures previously generated will be used to verify 

the functionality of the P4 integration into the Spider model.

 The internal packet generator replays the input capture, and the 

processed packets are logger to a new output capture file.

24

Spider Model

Packet 

Generator

input.pcap output.pcap



Spider Demo

 In the case of the Spider model, the match action tables are populated 

using a static configuration file on start up.

 This config contains the same rules as those inserted in the P4 switch

25

Spider Model

Match-Action 

Tables

config.json



Spider Demo

 The output generated by the Spider model is then compared against the 

output generated by the P4 switch in Mininet

26

Spider 

Model
output.pcap expected

output.pcap
input.pcap

Diff



27


