
Chapter 1

Detaching and Reconstructing
the Documentary Structure of
Source Code
Péter Diviánszky, Attila Góbi, Dániel Leskó, MónikaMészáros,1

Gábor Páli2
Category: Research 3

Abstract: Comments and white space in source code, ie. the documentarystruc-
ture of the source code should be preserved during program transformations if the
produced source is for human consumption. However, programtransformations
are easier to be described if the documentary structure may be discarded.

This paper presents a solution that the documentary structure is detached be-
fore the transformations and it is re-attached after the transformations. The de-
tached information is stored in three layers: token formattings, comments and
layout, which we call layered representation. This representation is also suitable
for analysing and refactoring the documentary structure ofthe source code. This
model is worked out for the F# programming language, and it has been imple-
mented in F# too. The proposed approach can be adapted to other programming
languages.

1.1 INTRODUCTION

Source code is primarily created for humans to read, and not for machines to
compile, it is way of communication between programmers [2,3]. For humans, a
source code is a document written in a formal language, though formal languages

1Eötvös Loránd University, Budapest, Hungary,
{divip,gobi}@aszt.inf.elte.hu, {lesda,bonnie}@inf.elte.hu

2Babeş-Bolyai University, Cluj Napoca, Romania; EötvösLoránd University,
Budapest, Hungarypgj@inf.elte.hu

3Supported by ELTE IKKK, Morgan Stanley, POSDRU/6/1.5/S/3/2008

1

2 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

program
representation

program
representation

transformations

source

synthesisanalysis

source

FIGURE 1.1. Typical source-to-source transformation

and syntax trees built from these well-formed documents areusually unable to
describe the document’s structure completely.

The following information is not present in a typical syntaxtree: comments,
indentation, layout (where the lines break), exact number and type of whites-
pace characters between tokens. This information will be referred asdocumen-
tary structure [10]. Documentary structure should be preserved during program
transformations if the produced source is for human consumption.

The typical approach for handling documentary structure regarding program
transformations is to store the documentary structure in the syntax tree [12, 11, 9,
8, 5] or besides the syntax tree [6]. This has the drawback that the storage and
processing of program code needs more effort.

In this paper, a new approach for handling the documentary structure is pre-
sented. This approach tries to preserve the whole documentary structure while
it makes possible for a program transformation step to work on only a suitable
representation of the source code without unnecessary information.

In Section 1.2, the fundamental concept is introduced, thenin Section 1.3, it
is extended to the F# [1] programming language. A short excerpt of the model
specification can be found in Section 1.4. In Section 1.5, an F# prototype imple-
mentation is presented for the proposed model.

1.2 LAYERS OF ABSTRACTION

Most of the program transformation tools process the sourceby analyzing it, then
synthesize the results.

A common source-to-source transformation scheme is presented on Fig. 1.1.
Note that unlike in compilers, documentary structure must be taken with extra
care, hence it is usually required to build dedicated lexical, syntactical and se-
mantical analyzers and store the documentary structure in the representation of
the program.

1.2. LAYERS OF ABSTRACTION 3

program
representation

program
representation

transformations

token
stream

token
stream

... ...

sourcesource

FIGURE 1.2. Layered source-to-source transformation

This model has been modified by us in the following way as Figure 1.2 shows.
Documentary structure is detached from and re-attached to the program code in
several steps. The detached information is represented by dashed lines. Left
side dots denote the usual phases of source code analysis like lexical analysis,
syntactical analysis and other semantical analysis steps as necessary. Rows of the
diagram are the representationlayers. Note that downward layers are referred as
higher level layers.

The main advantage is that the detached information will nottrouble the stor-
age and processing of program code in the higher abstractionlevels.

1.2.1 Layer Structure

Figure 1.3 contains a general layer structure. The black arrows denote information
flow on the figure. Splitting information is denoted by more than one black arrows
starting from a common box.

Detached information is always grouped into defaults and differences. Grey
arrows define the order of the operations: default values forthe actual layer should
be determined first in order to derive the differences. Generation of default values
and differences to them is explained in 1.4.2 and 1.4.4.

Splitting information into default and difference values is beneficial from sev-
eral aspects:

• Offers a more suitable data structure for program transformations and analysis
(see 1.3.1).

• Default values can be used when synthesizing new elements, for example, to

4 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

higher
representation

higher
representation

discarded
information

defaults

differences

representationrepresentation

FIGURE 1.3. General layer structure

determine their style. It is a common problem of refactorer programs how to
determine the visual representation of the newly generatedcode snippets.

1.3 APPLYING THE MODEL TO F#

The rest of this paper focuses on applying the proposed modelto process pro-
grams written in F#. Although this application can be easilyadapted to other
programming languages without support for macro definitions.

Figure 1.4 shows the detailed model. The meaning of layered representation,
double headed arrows and token arrangement are explained inthe following sub-
sections.

The detailed model has four layers: formatting, comments, layout and parse
tree. Starting from the parse tree layer, it is possible to add other higher abstraction
levels (see Section 1.6 for related future work). The paper discusses only the lower
layers mentioned above.

1.3.1 Layered Representation

Layered representation of the processed source code consists of the data presented
on Figure 1.4. These data will be referred ascomponents to the layered repre-
sentation. Components provide a representation of the original sources, where
different program transformations can be performed in a comfortable manner. To
demonstrate the uses of these components, some functions are described below:

Formatting differencesand layout differencesPossible refactoring steps on these
components are token formatting unification and layout unification within a
source file. The implementation is just the deletion of the differences. Of
course, partial unification is also possible, for example, when only the format-
ting of numeric literals is unified.

A possible program analysis on these components is to measure the number
of formatting or layout differences. The higher number indicates that the code
was mixed from several sources or written by different programmers.

1.3. APPLYING THE MODEL TO F# 5

Layered representation

default
formattings

token arrangement
(formatted tokens)

formatting
differences

identified
comments

token arrangement
(with comments)

parse tree
with positions

default
layout

layout
differences

parse tree parse tree

F# source F# source

token stream
with formatting

formattings

token stream comments

token arrangement
layout

parse tree

FIGURE 1.4. The detailed model

The programming environment can be extended to generate style warnings
from the differences.

Default formattingand default layoutPossible refactoring steps: Adjust token
formatting or layout. For example, one can easily convert all alphabetical
digits to lowercase in hexadecimal numeric literals.

Possible program analysis: Find the most common programming style.

These components can also help development. Version control systems are
not immune to the extra “noise” cased by different programming styles. This
can be cured so that on commit the formatting of tokens and thelayout are set
to a common style while on checkout the formattings and layout are set to the
style of the individual developer.

Parse treeAll the classical refactor and program analysis steps are performed on
this representation. By splitting the parse tree componentfurther, definitions
of these steps could be even more simplified (see Section 1.6 on related future
work).

6 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

1.3.2 Using Heuristics

On Figure 1.4, double-headed arrows denote injection of additional information.
For example, it requires information not present in the original source code to
identify which comment can be assigned to which program construct. It is pre-
ferred to eliminate the need for human interaction in such decisions, so heuristics
are added. The applied heuristics are further described in Section 1.4.4.

1.3.3 Token Arrangement

Token arrangement is a data structure which can be rendered to a token stream
given a particular page width. It has the following constructs: horizontal and
vertical composition, indentation, and a table construct similar to HTML tables.
The possible rendering algorithms are described in [4] and [13].

Suppose that the next code snippet is represented by a table construct in a
token arrangement data structure.

x < 0.11 -> -x
_ -> x

Suppose that the formattings of fraction literals are set toscientific style. This
change in formatting result in the next code after rendering:

x < 1.1e-1 -> -x
_ -> x

1.4 SPECIFICATION OF THE DETAILED MODEL

In this section, layers from the lower to the higher levels are discussed based on
Figure 1.4.

1.4.1 F# Source

At the moment F# source is a single F# source program file, a unit of compilation.
An F# source may use the light syntax option.

1.4.2 Formatting Layer

In the formatting layer, token formatting information is detached.

Formattings

Tokens can be arranged in several classes according to theirformatting. This
classification results in the following classes: space, space at end of line, line
break, character, string, integer numbers, fractional numbers, light syntax token,
and other tokens. Not every formatting for every token classis discussed here,
only examples are mentioned.

1.4. SPECIFICATION OF THE DETAILED MODEL 7

Formatting forspaces stores the information where a tabulator character is.
Number of spaces is not stored among the formatting but in thetoken itself as this
information will be detached in the layout layer.

Formatting forspaces at the end of line stores the number of spaces and where
the tabulator characters are. These tokens will be discarded from token stream for
the next layer.

Formatting forline breaks can have three values: Windows (CR+LF), Unix
(LF), Macintosh (CR). Because of this, there is only one constructor for new line
tokens. In general, it can be noted that a token and its formatting are comple-
menters. Formally, for arbitrary formatting for arbitrarytoken, there is a source
code where the given token appears with the given formatting.

One formatting information forcharacters is its source code representation:
simple (’a’), trigraph format (’\097’), or Unicode short format (’\u0061’).
For example, the token of the lexeme’\097’ is Char ’a’, and its formatting
is Trigraph. Note that the token itself does not contain any informationon
formatting.

Formatting forintegers consists of several attributes, like the number of lead-
ing zeros, and the cases of hexadecimal digits. For example,the token of lexeme
0x0000fFffu has the following attributes: the number itself (65535), its rep-
resentation (a 32-bit unsigned integer, it is flagged by theu at the end), and that
it was given in hexadecimal from. Formatting information for this lexeme are: it
contains four leading zeros, and that hexadecimal digits are mostly in lowercase,
but the sixth digit is written in uppercase.

Numeral system information is not part of the integer formatting, since many
good quality sources mix hexadecimal and decimal integer literals on purpose. (It
was a design decision that there should be no formatting differences in case of
good quality source code.)

Other tokens have no formatting information.

Token Stream with Formatting

Token stream contains position, token and formatting triples. Comments and
white space are also tokens. Neighboring spaces and tabulators are merged into
a token, but line breaks are separate tokens. Every other token is the same as in
case of a lexical analysis: literals, identifiers, keywords.

Default Formatting and Formatting Differences

Formatting attributes are divided into two logical groups whether they have a
global default value or not. For example, the following attributes has global de-
fault values:

• Number of leading zeros (defaulted to 0).

• Formatting of space characters (defaulted to contain no tabulators).

8 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

The following attributes has no global default values. Default values are cal-
culated as the most frequent value in the domain range:

• Formatting of new lines (possible values: CR+LF, LF, CR).

• Formatting ofExtraExponentSign. In scientific notation, exponent signs
might be omitted for literals in floating point representation, and the format-
ting will store whether they are given or not.

Formatting differences store the differences to the default values, indepen-
dently of whether they are calculated or predefined. To illustrate this, let us take
the previously discussed lexeme0x0000fFffu. Assume that the source code
contains lowercase hexadecimal integer literals in general. The attributes stored in
formatting differences are as follows: four leading zeros,the sixth digit is written
in uppercase. Note that the attribute on hexadecimal digitsare in lowercase is not
present here as it is a default.

Token Arrangement with Formatted Tokens

The generation of this data structure is as follows: The individual tokens in the
token arrangement (received from higher level) are searched for the accompanied
formatting in the list of formatting differences based on the old position for each
non-modified token. If there is no formatting information found, then the token
will have a default formatting. Note that this means that elements generated or
changed during a refactoring step will be formatted by the defaults.

Example: The Formatting Layer in Action

The most difficult is the reconstruction of space formatting, because space tokens
are discarded from the token stream in the higher layers. Application of white
space formatting is controlled by the original and modified token positions.

Consider the next code segment (_ denotes a space;\t denotes a tabulator
character).

four_\t=_3_+_1
y_=_4____
z_=_5

Data structure for formatting differences will contain thefollowing compo-
nents:

• Spaces in line 1 column 4–8 has a tabulator in columns 5–8.

• There are spaces at the end of line 2, columns 8–12.

These components are discarded in the next layer:

four = 3 + 1
y = 4
z = 5

1.4. SPECIFICATION OF THE DETAILED MODEL 9

Note that the next layer still keep the position information(like four is in
line 1, columns 0–4).

Suppose that after some transformation steps (moving the first line down and
increasing the indentation) the synthesized token stream (in the next layer):

y = 16
z = 5
four = 3 + 1

The synthesis of the token stream in the formatting layer is as follows.
Go through the token stream one by one. The old position of tokens (unique

identifiers) are supposed to be known in advance because it isadded to the tokens
as an attribute.

Old position for token4 is line 2, columns 4–5. Search the formatting differ-
ences data for line 2, column 5 and it will be found that there are spaces at the end
of line 2, at columns 5–9. Now check that token4 is still at the end of line in the
transformed code, and insert 4 spaces after it. (If the checkhas failed, formatting
information should be discarded.)

Old position for tokenfour is line 1, columns 0–4. Search the formatting
differences for line 1, column 4, and it will be found that spaces at line 1, columns
4–8 have a tabulator characters in columns 5–8. Now check that whether the next
token in the transformed code the token= has old start position of line 1, column
8. It is true, so insert a space betweenfour and token=with a similar formatting.

The final result is:

____y_=_4____
____z_=_5
____four_\t=_3_+_1

1.4.3 Comment Layer

Comments are detached in the comment layer.

Token Stream

Token stream consists of pairs of tokens and positions, therefore it does not pro-
vide information on token formatting. This token stream also does not contain
any whitespace token.

Comments

Comments are stored in a token as a string in verbatim format.

Identified Comments

Position range information is added to abstract syntax tree, and it is capable of
identifying program constructs. Data structure for identified comments is com-
posed of such identifiers, relative positions, and comments. An identifier denote

10 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

the syntactical construct (a part of source code) where the given comment pos-
sibly belongs to. This assignment is guided by heuristics, see Section 1.4.4. A
relative position gives the relative position of the given comment to the assigned
construct.

Token Arrangement with Comments

The creation process of this data structure is as follows: The input token arrange-
ment comes from a higher layer, and it does not contain comments. For each token
in the input arrangement, search for the comments assigned to the old position of
the token. If there is a comment found for a token, then find a place to insert the
comment according to its relative position, and insert it into the arrangement.

1.4.4 Layout Layer

Source code layout is detached in the layout layer.
The #light declaration makes white space significant in F# and instructs the

F# compiler and interpreter to use the indentation of F# codeto determine where
constructs start and finish. This feature is similar in spirit to the use of indentation
by Python and Haskell.

The light syntax force the programmer to use specific code layout, however
layout is not completely determined by the light syntax. Forexample, indentation
for a complete code block might be changed in a sensible manner, but lines within
a block should not be indented differently.

Parse Tree with Positions

A special parse tree is built for this layer. It is very similar to the parse trees
employed by compilers, however there are some notable differences, so the con-
structed syntax tree:

• Omits abstractions as much as possible, i.e. it tries to follow the concrete
structure of the source code.

• Contains one or more positions for every construct, i.e. it is full of positions.

One must be able to restore the original token stream together with the original
positions by a proper traversal of the tree.

Resolution of the light syntax option is performed directlybefore the parse
tree generation. Extra tokens added during this phase are labeled to ensure their
correct processing.

Layout

Data structure for layout stores the concrete indentation structure of the source
code. Here, layout is considered to be all possible indentations for the program

1.4. SPECIFICATION OF THE DETAILED MODEL 11

what does not change the semantics. (In case of light syntax this is a real con-
straint.)

One must be able to restore this type of information from the parse tree by
deleting all the position information.

Description of the layout data structure is omitted becauseof space limitation
of the paper. However, some of its important elements are highlighted by the
sample source code shown on the next code:

let rec length l =
match l with

[] -> 0

| x::xs ->
1 + length xs

Data structure for layout is designed to catch all the original intentions of the
source code author as much as possible. For example, based ona deeper analysis
of the previous code, it is expected that all the patterns, the right arrows, and the
expressions following the arrows in thematch construct are indented to be in the
same column.

Layout information is assigned to syntactical constructs.Layout for each con-
struct stores information only about the indentation between its starting and end-
ing positions. Locations for separate syntactical constructs are controlled by in-
formation stored in the smallest enclosing construct (whenneeded).

[[1; 3; 5]
; [4; 8; 12]
; [14; 6; 8]
]

Layout information describing that the columns of the matrix start in the same
column, is stored in the outer list’s layout for this code snippet.

Determining the layout requires many additional information to be added to
find out what the author’s original intention was. It is presented in a form of
different heuristics, integrated into the implementationin advance.

Construction of the layout is as follows: Traverse the parsetree in a top-down,
left-right style. For each node heuristics are invoked according to the actual syn-
tactical construct, and it generates the corresponding layout information. An ad-
vantage of this approach that different heuristics might beinvoked for different
programming constructs, implementors are not forced to usea monolithic one.

Finally, description of some sample layout data structuresfor the F# program-
ming language are included. The next type definitions shows the common types
used in the implementation. The values ofFloating hold the distance between
tokens in the same line.

type BlankLines = BlankLines of int
type IndentedBy = IndentedBy of int

12 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

type Floating = Floating of int
type Index = Index of int

TypeRelativeIdentation has two data constructors. Data constructor
InNewLine represents the distance between two neighboring tokens when they
are in two different lines physically. Their distance is measured in characters. It
stores the number of blank lines between the tokens, and a difference for their
effective indentation in the line. This data structure is ideal for describing sub-
constructs in a syntactical construct.

type RelativeIndentation =
| InNewLine of BlankLines * IndentedBy
| InSameLine of Floating

TypeRelativeIndentations represents a data structure for storing lo-
cations for more complicated programming constructs with more components,
e.g. relative positions for elements of a list. Informationis stored in form of
defaults (Uniform) and differences to them (RelativeIndentation).

type RelativeIndentations =
| RelativeIndentations of

Uniform * (Index * RelativeIndentation) list

TypeUniform stores the default relative locations of more elements. Data
constructorInTheSameColumn used only when syntactical units are in the
same column, and it stores the minimal distance measured from the previous con-
struct. Data constructorSameIndentedBy stores the number of blank lines
between the elements, and the indentation relative to a position of the enclos-
ing syntactical construct. Data constructorSameFloating stores the distance
information between the elements in the same line.

type Uniform =
| InTheSameColumn of Floating
| SameIndentedBy of BlankLines * IndentedBy
| SameFloating of Floating

Default Layout and Layout Differences

A default layout for each type of the syntactical constructsis derived from the
instances found in the source code.

Token Arrangement

This data structure is constructed by traversing the parse tree while applying the
default layout and layout differences on the language constructs. As before, the
old position helps to identify the corresponding parts.

1.5. IMPLEMENTATION 13

1.4.5 Parse Tree Layer

Currently no further information is detached from the parsetree so this layer has
a simple structure. The two arrows on the bottom of Figure 1.4denote identity
functions.

1.5 IMPLEMENTATION

The specified system was implemented in F#. We used F# as a functional lan-
guage with rare exceptions. Arrows on Figure 1.4 are implemented as functions.
The “discard comments” and “discard whitespace” functionswas implemented as
applications of the well-knownfilter function, while others are applications
of map etc.

The lexical analyzer was generated by thefslex tool, which is similar to
ocamllex andlex. The source forfslex is partially based on the source
code of F# compiler’s lexical routines, and it has been modified to suit the needs.
Notable differences:

• Representation for numeric literals is more structural thus it is more suitable
for program analysis.

• The lexer also emits token formatting beside tokens.

The syntactical analyzer was generated by thefsyacc tool which is similar
to ocamlyacc andyacc. The grammar forfsyacc is based on the original
F# grammar, and at the moment there are no major modificationscompared to
that. The major difference is that the output of the parser isa concrete syntax tree
(parse tree), not an abstract syntax tree.

There are some minor differences from the specification in the current imple-
mentation. In the specification, it has been mentioned that tokens can be arranged
in several classes according to their formatting (see Section 1.4.2). In the imple-
mentation, there is only one formatting class at the moment,but it is planned to
classify token formatting here as well. The “token arrangement” data structure is
not yet implemented, token stream is used instead.

1.5.1 Heuristics

Implementation of the used heuristics can be refined as needed. To get a grasp of
the capabilities of the current implementation, consider the following code seg-
ment:

(* Main comment *)
// comment_1
open System; open System
// comment_2
// comment_3
let a =

14 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

let b = 5
b

let c = 10

In the example the multi line comment has been assigned to allsyntactical
constructs on the top level. The one line commentcomment_1 has been assigned
only to the twoopen constructs. Directly connected one line comments (i.e.
no blank lines between them) are merged, because it is assumed that it was the
original intention. Hencecomment_2 andcomment_3 have been assigned to
thelet a andlet c constructs. Note that if thelet c expression would have
been also indented, then it had no comments assigned.

1.6 FUTURE PLAN

It is possible to define abstraction levels higher than the parse tree. To be more
specific, we plan to add scope analysis, which would detach the entity name in-
formation (variable, function, type and module names) fromthe parse tree.

It is planned to extend the model to deal with more files files, Visual Studio
projects or solutions.

Undoing may be managed by some of the programming environments (for
example Wisual Studio). However, much faster undoing can beachieved by a
built-in method which stores the source code in its layered representation. Storing
the source in the layered representation also saves the costof re-analysing the
source after program transformation steps. To implement these ideas is future
work.

As an other future work, it is planned to parse these comment tokens to de-
termine whether they include any code snippets by using heuristics. This would
make possible for refactoring steps to transform source code segments even in
comments, e.g. in case of renaming variables.

1.7 RELATED WORKS

We found that the paper [9] is closest to idea we introduced here, it tries to solve
the very same problem. In this paper “documentary structure” denotes exactly the
same information (indentation, comments, line breaks, andextra spaces). Com-
ments are also assigned to the abstract syntax tree nodes. Itrecognizes the im-
portance of “vertical alignment”. However, there are some important differences:
it distinguishes important and not important structures among the possible ones.
It also does not feel so important to move comments together with the assigned
constructs, because it has to be revisited after each refactor step anyway. A sig-
nificant difference that it does not provide any implementation, it just theorizes
and speculates on the topic. In the contrast to this, we provide a concrete solution
based on a layered representation approach, give an excerptfor its specification
by discussing many questions, and we already have a working implementation.

1.8. CONCLUSION 15

In [6] a Haskell refactoring tool, called HaRe is described.HaRe also pre-
serves the layout and the comments. Although, a major difference to our model
that program transformation steps implemented in HaRe process the token stream
and the abstract syntax tree in parallel, and it makes harderto add new transfor-
mations.

[8] discusses a refactoring tool for the programming language Smalltalk, what
was the first of the most known ones. It does not take layout into account, but it
is acceptable for Smalltalk as comments are parts of a method, therefore they are
parts of the syntax tree.

Opdyke’s PhD thesis [7] defines refactor steps for OO languages. It is com-
monly referenced and it is comprehensive work on the topic, however it was made
popular by [2]. It does not discuss the layout.

[5] analyzes the problem of handling macros, comments, and layout in Erlang
refactoring. Like in our paper, it is also important for the authors to preserve the
visual representation of the source code to be transformed,but they choose dif-
ferent principles for the implementation. Layout is encoded on the token stream’s
level as follows (subsection 4.1): every token has a pre and post white space field,
and it can contain comments too. An “ad hoc” algorithm divides the space be-
tween tokens into two segments. In our opinion, assigning comments to tokens is
not suitable for the optimal behavior of program transformations. For this reason,
we assign comments to syntactical constructs.

Another paper [12] discusses preservation of style for C/C++ programs, and
handling of macro expansions. One of its goals to minimize the “noise” created
by the program transformations in different version control systems. It also em-
phasizes the importance of layout preservation. A notable difference from our ap-
proach, that the documentary structure is stored in the abstract syntax tree directly
(it is called LL-AST for Literal-Layout AST), but due to this, the complexity of
the syntactical analysis is increased. On the other hand, the LL-AST is unable to
describe that two tokens are in the same column. A similar approach can be found
in [11].

1.8 CONCLUSION

We proposed a flexible solution for handling the low-level structure of the source
code for refactoring and code analyzer tools. The solution was explained for the
F# programming language, but the proposed approach can be adapted to any other
programming language if it does not support macro expansions. Operability of the
approach is also supported by an implementation written in F#.

To our knowledge, layered representation of the source codehas not been
proposed so far in the literature.

REFERENCES

[1] The F# 1.9.6 Draft Language Specification, 09 2008. Microsoft Research and the
Microsoft Developer Division, http://research.microsoft.com/en-us/um/cambridge

16 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

/projects/fsharp/manual/spec.pdf.

[2] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 1999.

[3] A. Goldberg. Programmer as reader.IEEE Software, 4(5):62–70, 1987.

[4] J. Hughes. The design of a pretty-printing library.Lecture Notes in Computer Science,
925:53–96, 1995.

[5] R. Kitlei, L. Lövei, T. Nagy, and Z. Horváth. Layout preserving, automatically gen-
erated parser for Erlang refactoring?

[6] H. Li, C. Reinke, and S. Thompson. Tool support for refactoring functional programs.
In Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages 27–38. ACM
New York, NY, USA, 2003.

[7] W. Opdyke, D. of Computer Science, and U. of Illinois at Urbana-Champaign.Refac-
toring object-oriented frameworks. University of Illinois at Urbana-Champaign,
1992.

[8] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for Smalltalk. Theory and
Practice of Object systems, 3(4):253–263, 1997.

[9] M. Van De Vanter. Preserving the documentary structure of source code inlanguage-
based transformation tools. InFirst IEEE International Workshop on Source Code
Analysis and Manipulation, 2001. Proceedings, pages 131–141, 2001.

[10] M. Van De Vanter. The documentary structure of source code. Information and
software technology, 44(13):767–782, 2002.

[11] M. van den Brand and J. Vinju. Rewriting with layout. InProceedings of RULE2000,
2000.

[12] D. Waddington and B. Yao. High-fidelity C/C++ code transformation. Science of
Computer Programming, 68(2):64–78, 2007.

[13] P. Wadler. A prettier printer.Unpublished manuscript, 1998.

