Chapter 1

Detaching and Reconstructing
the Documentary Structure of
Source Code

Péter Divianszky, Attila Gobi, Daniel Leskd, Monikdészaros
Gabor Pal?
Category: Research 3

Abstract: Comments and white space in source code, ie. the documeiitacy
ture of the source code should be preserved during progearsformations if the
produced source is for human consumption. However, progransformations
are easier to be described if the documentary structure maysbarded.

This paper presents a solution that the documentary stautuletached be-
fore the transformations and it is re-attached after thesfamations. The de-
tached information is stored in three layers: token formg#f, comments and
layout, which we call layered representation. This repregeon is also suitable
for analysing and refactoring the documentary structuth@fource code. This
model is worked out for the F# programming language, andstheen imple-
mented in F# too. The proposed approach can be adapted topotiggamming
languages.

1.1 INTRODUCTION

Source code is primarily created for humans to read, andoromfchines to
compile, it is way of communication between programmer8]2For humans, a
source code is a document written in a formal language, théargnal languages

1Ebtvds Lorand University, Budapest, Hungary,
{di vi p, gobi }@szt.inf.elte.hu,{l esda, bonnie}@nf.elte. hu
2Babes-Bolyai University, Cluj Napoca, Romania; Eétuasand University,
Budapest, Hungarggj @ nf . el te. hu
3Supported by ELTE IKKK, Morgan Stanley, POSDRU/6/1.5/3(8/8

2 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

source source
analysis synthesis
program transformations program

representatior representatiorn

FIGURE 1.1. Typical source-to-sourcetransformation

and syntax trees built from these well-formed documentsuatally unable to
describe the document’s structure completely.

The following information is not present in a typical syntage: comments,
indentation, layout (where the lines break), exact numier tgpe of whites-
pace characters between tokens. This information will fermed asdocumen-
tary structure [10]. Documentary structure should be preserved duringnamo
transformations if the produced source is for human consiomp

The typical approach for handling documentary structugaurging program
transformations is to store the documentary structuredrsyimtax tree [12, 11, 9,
8, 5] or besides the syntax tree [6]. This has the drawbadkitigastorage and
processing of program code needs more effort.

In this paper, a new approach for handling the documentaugtsire is pre-
sented. This approach tries to preserve the whole docunyesttacture while
it makes possible for a program transformation step to warlonly a suitable
representation of the source code without unnecessamniafon.

In Section 1.2, the fundamental concept is introduced, theSection 1.3, it
is extended to the F# [1] programming language. A short gxaarthe model
specification can be found in Section 1.4. In Section 1.5,/AprBtotype imple-
mentation is presented for the proposed model.

1.2 LAYERSOF ABSTRACTION

Most of the program transformation tools process the sday@nalyzing it, then
synthesize the results.

A common source-to-source transformation scheme is ptedem Fig. 1.1.
Note that unlike in compilers, documentary structure mgstaken with extra
care, hence it is usually required to build dedicated ldxiggntactical and se-
mantical analyzers and store the documentary structureeimepresentation of
the program.

1.2. LAYERS OF ABSTRACTION 3

source source
token token
———————— —»>
stream stream
———————— >
program transformations program
representatiorn representation

FIGURE 1.2. Layered source-to-sourcetransformation

This model has been modified by us in the following way as FEiguP shows.
Documentary structure is detached from and re-attacheuetprogram code in
several steps. The detached information is representechslyed lines. Left
side dots denote the usual phases of source code analysigtikal analysis,
syntactical analysis and other semantical analysis steps@essary. Rows of the
diagram are the representati@yers. Note that downward layers are referred as
higher level layers.

The main advantage is that the detached information wiltmatble the stor-
age and processing of program code in the higher abstrdetiefs.

121 Layer Structure

Figure 1.3 contains a general layer structure. The bladaardenote information
flow on the figure. Splitting information is denoted by moraritone black arrows
starting from a common box.

Detached information is always grouped into defaults afférdinces. Grey
arrows define the order of the operations: default valueth®actual layer should
be determined first in order to derive the differences. Gatiar of default values
and differences to them is explained in 1.4.2 and 1.4.4.

Splitting information into default and difference valuedeneficial from sev-
eral aspects:

¢ Offers a more suitable data structure for program transéitions and analysis
(see 1.3.1).

¢ Default values can be used when synthesizing new elementsxample, to

4 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

defaults
. discarded —" T .
representationr—| . ¢ i representatior
information —__ — >
v differences A
higher higher
representation representation

FIGURE 1.3. General layer structure

determine their style. It is a common problem of refactoregpams how to
determine the visual representation of the newly genexaidd snippets.

1.3 APPLYING THE MODEL TO F#

The rest of this paper focuses on applying the proposed ntodmiocess pro-
grams written in F#. Although this application can be eaaitiapted to other
programming languages without support for macro defingtion

Figure 1.4 shows the detailed model. The meaning of layepksentation,
double headed arrows and token arrangement are explaitieel fallowing sub-
sections.

The detailed model has four layers: formatting, commengmut and parse
tree. Starting from the parse tree layer, itis possible tbaber higher abstraction
levels (see Section 1.6 for related future work). The pajseudses only the lower
layers mentioned above.

1.3.1 Layered Representation

Layered representation of the processed source code consists of the data presented
on Figure 1.4. These data will be referredcasnponents to the layered repre-
sentation. Components provide a representation of theénatigources, where
different program transformations can be performed in afodable manner. To
demonstrate the uses of these components, some funct®dssaribed below:

Formatting differencesand layout differencesPossible refactoring steps on these
components are token formatting unification and layout caiifon within a
source file. The implementation is just the deletion of thiéedénces. Of
course, partial unification is also possible, for exampleemwonly the format-
ting of numeric literals is unified.

A possible program analysis on these components is to me#seimumber
of formatting or layout differences. The higher number aadés that the code
was mixed from several sources or written by different paogmers.

1.3. APPLYING THE MODEL TO F# 5

F# source F# source
Layered representation
default
formattings
token stream | | formanings/ T token arrangemert
with formatting \ - (formatted tokens
formatting | —
differences
token strean—= comments____ [igentified token arrangemert
comments (with comments)
parse tree default

with positionsf—mp|

|——™ layout —

layout
\ token arrangemert
layout | —
differences
parse treg » parse treg » parse treg

FIGURE 1.4. Thedetailed model

The programming environment can be extended to generd&sarnings
from the differences.

Default formatting and default layoutPossible refactoring steps: Adjust token
formatting or layout. For example, one can easily convdrakhabetical
digits to lowercase in hexadecimal numeric literals.

Possible program analysis: Find the most common programstye.

These components can also help development. Version taystems are
not immune to the extra “noise” cased by different programgstyles. This
can be cured so that on commit the formatting of tokens anthtfoait are set
to a common style while on checkout the formattings and lagoeiset to the
style of the individual developer.

Parse treeAll the classical refactor and program analysis steps afepeed on
this representation. By splitting the parse tree compohetiter, definitions
of these steps could be even more simplified (see SectiomIrélated future
work).

6 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

1.3.2 Using Heuristics

On Figure 1.4, double-headed arrows denote injection oftiaddl information.
For example, it requires information not present in the inafysource code to
identify which comment can be assigned to which programtcocis It is pre-
ferred to eliminate the need for human interaction in suctisitens, so heuristics
are added. The applied heuristics are further describeddtidh 1.4.4.

1.3.3 Token Arrangement

Token arrangement is a data structure which can be rendered to a token stream
given a particular page width. It has the following constsuchorizontal and
vertical composition, indentation, and a table constrimtlar to HTML tables.
The possible rendering algorithms are described in [4] 43§ [

Suppose that the next code snippet is represented by a tahdtrect in a
token arrangement data structure.

X <0.11 -> -X
-> X

Suppose that the formattings of fraction literals are settentific style. This
change in formatting result in the next code after rendering

X < 1.1le-1 -> -X
-> X

1.4 SPECIFICATION OF THE DETAILED MODEL

In this section, layers from the lower to the higher levels discussed based on
Figure 1.4.

14.1 F# Source

At the moment F# source is a single F# source program file taticdompilation.
An F# source may use the light syntax option.

1.4.2 Formatting Layer

In the formatting layer, token formatting information istdehed.

Formattings

Tokens can be arranged in several classes according toftineiatting. This

classification results in the following classes: spacecsm end of line, line
break, character, string, integer numbers, fractionallmensy light syntax token,
and other tokens. Not every formatting for every token clasdiscussed here,
only examples are mentioned.

1.4. SPECIFICATION OF THE DETAILED MODEL 7

Formatting forspaces stores the information where a tabulator character is.
Number of spaces is not stored among the formatting but itolken itself as this
information will be detached in the layout layer.

Formatting forspaces at the end of line stores the number of spaces and where
the tabulator characters are. These tokens will be disddrde token stream for
the next layer.

Formatting forline breaks can have three values: Windows (CR+LF), Unix
(LF), Macintosh (CR). Because of this, there is only one troiesor for new line
tokens. In general, it can be noted that a token and its faimgaare comple-
menters. Formally, for arbitrary formatting for arbitranken, there is a source
code where the given token appears with the given formatting

One formatting information focharacters is its source code representation:
simple (a’), trigraph format’(\ 097’), or Unicode short format 4 u0061’).

For example, the token of the lexeme097’ is Char ' a’, and its formatting
is Tri gr aph. Note that the token itself does not contain any information
formatting.

Formatting forintegers consists of several attributes, like the number of lead-
ing zeros, and the cases of hexadecimal digits. For exattgéoken of lexeme
0x0000f Ff f u has the following attributes: the number itself (65535 rep-
resentation (a 32-bit unsigned integer, it is flagged byutfa the end), and that
it was given in hexadecimal from. Formatting information flois lexeme are: it
contains four leading zeros, and that hexadecimal digésraostly in lowercase,
but the sixth digit is written in uppercase.

Numeral system information is not part of the integer fotmat since many
good quality sources mix hexadecimal and decimal intetgralis on purpose. (It
was a design decision that there should be no formattingreiffces in case of
good quality source code.)

Other tokens have no formatting information.

Token Stream with Formatting

Token stream contains position, token and formatting égpl Comments and
white space are also tokens. Neighboring spaces and tatsiae merged into
a token, but line breaks are separate tokens. Every othentgkthe same as in
case of a lexical analysis: literals, identifiers, keywords

Default Formatting and Formatting Differences

Formatting attributes are divided into two logical grouplkether they have a
global default value or not. For example, the followingiatites has global de-
fault values:

e Number of leading zeros (defaulted to 0).

e Formatting of space characters (defaulted to contain ndasdrs).

8 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

The following attributes has no global default values. D#faalues are cal-
culated as the most frequent value in the domain range:

e Formatting of new lines (possible values: CR+LF, LF, CR).

e Formatting ofExt r aExponent Si gn. In scientific notation, exponent signs
might be omitted for literals in floating point represeraati and the format-
ting will store whether they are given or not.

Formatting differences store the differences to the défeallies, indepen-
dently of whether they are calculated or predefined. Totillis this, let us take
the previously discussed lexer@g0000f Ff f u. Assume that the source code
contains lowercase hexadecimal integer literals in gén€ha attributes stored in
formatting differences are as follows: four leading zeths,sixth digit is written
in uppercase. Note that the attribute on hexadecimal digisn lowercase is not
present here as itis a default.

Token Arrangement with Formatted Tokens

The generation of this data structure is as follows: Theviddial tokens in the

token arrangement (received from higher level) are sedrfiirehe accompanied
formatting in the list of formatting differences based oa thd position for each

non-modified token. If there is no formatting informatiorufa, then the token
will have a default formatting. Note that this means thatredats generated or
changed during a refactoring step will be formatted by tHauwlés.

Example: The Formatting Layer in Action

The most difficult is the reconstruction of space formattibecause space tokens
are discarded from the token stream in the higher layers.liégipn of white
space formatting is controlled by the original and modifigken positions.

Consider the next code segmentdenotes a spacé;t denotes a tabulator
character).

four \t=3 + 1
y =4 ___
z

T
[N

Data structure for formatting differences will contain tfelowing compo-
nents:

e Spaces in line 1 column 4-8 has a tabulator in columns 5-8.
e There are spaces at the end of line 2, columns 8-12.

These components are discarded in the next layer:

f our =3+1

y =4

z =5

1.4. SPECIFICATION OF THE DETAILED MODEL 9

Note that the next layer still keep the position informat{bke f our is in
line 1, columns 0-4).

Suppose that after some transformation steps (moving #tdifie down and
increasing the indentation) the synthesized token stréathg next layer):

y = 16
z =5
f our =3+ 1

The synthesis of the token stream in the formatting layes ibows.

Go through the token stream one by one. The old position @rteKunique
identifiers) are supposed to be known in advance becausadtid to the tokens
as an attribute.

Old position for tokert is line 2, columns 4-5. Search the formatting differ-
ences data for line 2, column 5 and it will be found that theesspaces at the end
of line 2, at columns 5-9. Now check that tokéims still at the end of line in the
transformed code, and insert 4 spaces after it. (If the chasKailed, formatting
information should be discarded.)

Old position for tokerf our is line 1, columns 0—4. Search the formatting
differences for line 1, column 4, and it will be found thatepsaat line 1, columns
4-8 have a tabulator characters in columns 5-8. Now chetkuhether the next
token in the transformed code the tokehas old start position of line 1, column
8. Itis true, so insert a space betwéerur and tokers with a similar formatting.

The final result is:

y_ =4
z_=5

four \'t=3 + 1

14.3 Comment Layer

Comments are detached in the comment layer.

Token Stream

Token stream consists of pairs of tokens and positionsetber it does not pro-
vide information on token formatting. This token streampal®es not contain
any whitespace token.

Comments

Comments are stored in a token as a string in verbatim format.

Identified Comments

Position range information is added to abstract syntax @ed it is capable of
identifying program constructs. Data structure for idiedi comments is com-
posed of such identifiers, relative positions, and commehtsidentifier denote

10 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

the syntactical construct (a part of source code) where itr@ngomment pos-
sibly belongs to. This assignment is guided by heuristies, Section 1.4.4. A
relative position gives the relative position of the givemranent to the assigned
construct.

Token Arrangement with Comments

The creation process of this data structure is as follows: imput token arrange-
ment comes from a higher layer, and it does not contain cortsnEar each token
in the input arrangement, search for the comments assigrtae bld position of

the token. If there is a comment found for a token, then findaagto insert the
comment according to its relative position, and inserttib ime arrangement.

14.4 Layout Layer

Source code layout is detached in the layout layer.

The #light declaration makes white space significant in Fé iastructs the
F# compiler and interpreter to use the indentation of F# ¢odketermine where
constructs start and finish. This feature is similar in $pirthe use of indentation
by Python and Haskell.

The light syntax force the programmer to use specific codeugyhowever
layout is not completely determined by the light syntax. &mmple, indentation
for a complete code block might be changed in a sensible maoutdines within
a block should not be indented differently.

Parse Tree with Positions

A special parse tree is built for this layer. It is very simita the parse trees
employed by compilers, however there are some notablerelifées, so the con-
structed syntax tree:

e Omits abstractions as much as possible, i.e. it tries tevolhe concrete
structure of the source code.

e Contains one or more positions for every construct, i.es filll of positions.

One must be able to restore the original token stream togeittethe original
positions by a proper traversal of the tree.

Resolution of the light syntax option is performed diredilgfore the parse
tree generation. Extra tokens added during this phase laeéethto ensure their
correct processing.

Layout

Data structure for layout stores the concrete indentatircire of the source
code. Here, layout is considered to be all possible indiemisfor the program

1.4. SPECIFICATION OF THE DETAILED MODEL 11

what does not change the semantics. (In case of light syhtsuista real con-
straint.)

One must be able to restore this type of information from thesg tree by
deleting all the position information.

Description of the layout data structure is omitted becadispace limitation
of the paper. However, some of its important elements arbligigted by the
sample source code shown on the next code:

let rec length | =

mat ch Il with
[1 -> 0
| x::xs ->

1 + length xs

Data structure for layout is designed to catch all the odbintentions of the
source code author as much as possible. For example, basediemper analysis
of the previous code, it is expected that all the patterresrithht arrows, and the
expressions following the arrows in that ch construct are indented to be in the
same column.

Layout information is assigned to syntactical construicsésiout for each con-
struct stores information only about the indentation betwis starting and end-
ing positions. Locations for separate syntactical cowssrare controlled by in-
formation stored in the smallest enclosing construct (wiesded).

[[1;, 3; 5]
; [4; 8 12]
; [14; 6; 8]

]

Layout information describing that the columns of the medtart in the same
column, is stored in the outer list’s layout for this codepgrt.

Determining the layout requires many additional inforroatio be added to
find out what the author’s original intention was. It is pre®a in a form of
different heuristics, integrated into the implementafioadvance.

Construction of the layout is as follows: Traverse the p&esein a top-down,
left-right style. For each node heuristics are invoked atiog to the actual syn-
tactical construct, and it generates the correspondinmulaipformation. An ad-
vantage of this approach that different heuristics mighinveked for different
programming constructs, implementors are not forced tausenolithic one.

Finally, description of some sample layout data structfoethe F# program-
ming language are included. The next type definitions shbesbmmon types
used in the implementation. The valuedbfoat i ng hold the distance between
tokens in the same line.

type Bl ankLi nes = Bl ankLi nes of int
type | ndent edBy | ndent edBy of int

12 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

type Floating = Floating of int
type | ndex = I ndex of int

TypeRel ati vel dent at i on has two data constructors. Data constructor
I nNewLi ne represents the distance between two neighboring tokens thieg
are in two different lines physically. Their distance is mad in characters. It
stores the number of blank lines between the tokens, andeetite for their
effective indentation in the line. This data structure isalifor describing sub-
constructs in a syntactical construct.

type Rel ativelndentation =
| I'nNewLi ne of Bl ankLi nes * | ndentedBy
| I'nSameLi ne of Floating

TypeRel at i vel ndent at i ons represents a data structure for storing lo-
cations for more complicated programming constructs withrancomponents,
e.g. relative positions for elements of a list. Informatierstored in form of
defaults Uni f or m) and differences to theniRg¢l at i vel ndent ati on).

type Rel ativelndentations =
| Relativelndentations of
Uniform =* (Index * Relativelndentation) I|ist

Type Uni f or mstores the default relative locations of more elementsaDat
constructorl nTheSameCol umrm used only when syntactical units are in the
same column, and it stores the minimal distance measurettfre previous con-
struct. Data constructddanel ndent edBy stores the number of blank lines
between the elements, and the indentation relative to ai@osf the enclos-
ing syntactical construct. Data construc8ameF| oat i ng stores the distance
information between the elements in the same line.

type Uniform=
| I'nTheSaneCol um of Floating
| Sanel ndent edBy of Bl ankLi nes * | ndent edBy
| SaneFl oating of Floating

Default Layout and Layout Differences

A default layout for each type of the syntactical construstderived from the
instances found in the source code.

Token Arrangement

This data structure is constructed by traversing the pagsevthile applying the
default layout and layout differences on the language cocist As before, the
old position helps to identify the corresponding parts.

1.5. IMPLEMENTATION 13

145 ParseTreelLayer

Currently no further information is detached from the pdrse so this layer has
a simple structure. The two arrows on the bottom of Figurededote identity
functions.

15 IMPLEMENTATION

The specified system was implemented in F#. We used F# as tdiuaiclan-
guage with rare exceptions. Arrows on Figure 1.4 are impfaetkas functions.
The “discard comments” and “discard whitespace” functiwas implemented as
applications of the well-knowhi | t er function, while others are applications
of map etc.

The lexical analyzer was generated by fred ex tool, which is similar to
ocamnl | ex andl ex. The source fof sl ex is partially based on the source
code of F# compiler’s lexical routines, and it has been medifo suit the needs.
Notable differences:

e Representation for numeric literals is more structurastitis more suitable
for program analysis.

e The lexer also emits token formatting beside tokens.

The syntactical analyzer was generated byftegacc tool which is similar
to ocam yacc andyacc. The grammar fof syacc is based on the original
F# grammar, and at the moment there are no major modificatiompared to
that. The major difference is that the output of the parsardsncrete syntax tree
(parse tree), not an abstract syntax tree.

There are some minor differences from the specificationeérctirrent imple-
mentation. In the specification, it has been mentioned dketrts can be arranged
in several classes according to their formatting (see &edti4.2). In the imple-
mentation, there is only one formatting class at the moniaiitit is planned to
classify token formatting here as well. The “token arrangethdata structure is
not yet implemented, token stream is used instead.

15.1 Heuristics

Implementation of the used heuristics can be refined as de@deget a grasp of
the capabilities of the current implementation, consitierfollowing code seg-
ment:

(* Main coment x)

/1l coment 1

open System open System
/! coment 2

/1 coment 3

let a =

14 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

In the example the multi line comment has been assigned teyathctical
constructs on the top level. The one line comnearment _1 has been assigned
only to the twoopen constructs. Directly connected one line comments (i.e.
no blank lines between them) are merged, because it is adsiimateit was the
original intention. Henceomrent _2 andconment _3 have been assigned to
thel et aandl et c constructs. Note that if tHeet ¢ expression would have
been also indented, then it had no comments assigned.

1.6 FUTURE PLAN

It is possible to define abstraction levels higher than thregtrtee. To be more
specific, we plan to add scope analysis, which would detaeletihity name in-
formation (variable, function, type and module names) ftheparse tree.

It is planned to extend the model to deal with more files fildsu® Studio
projects or solutions.

Undoing may be managed by some of the programming envirotengtor
example Wisual Studio). However, much faster undoing caadigéeved by a
built-in method which stores the source code in its layeepdesentation. Storing
the source in the layered representation also saves theotostanalysing the
source after program transformation steps. To implemesgethideas is future
work.

As an other future work, it is planned to parse these comnuetnis to de-
termine whether they include any code snippets by usingistexs: This would
make possible for refactoring steps to transform source s@gments even in
comments, e.g. in case of renaming variables.

1.7 RELATED WORKS

We found that the paper [9] is closest to idea we introduced,lietries to solve

the very same problem. In this paper “documentary struttierotes exactly the
same information (indentation, comments, line breaks,extih spaces). Com-
ments are also assigned to the abstract syntax tree nodexofnizes the im-
portance of “vertical alignment”. However, there are sompadrtant differences:
it distinguishes important and not important structuresagithe possible ones.
It also does not feel so important to move comments togetitartive assigned
constructs, because it has to be revisited after each oefstefp anyway. A sig-
nificant difference that it does not provide any implemeaatstit just theorizes

and speculates on the topic. In the contrast to this, we geawiconcrete solution
based on a layered representation approach, give an efoeif specification

by discussing many questions, and we already have a wonkiptementation.

1.8. CONCLUSION 15

In [6] a Haskell refactoring tool, called HaRe is describétaRe also pre-
serves the layout and the comments. Although, a major difiex to our model
that program transformation steps implemented in HaRegaothe token stream
and the abstract syntax tree in parallel, and it makes haodsid new transfor-
mations.

[8] discusses a refactoring tool for the programming lamggu@malltalk, what
was the first of the most known ones. It does not take layoatastount, but it
is acceptable for Smalltalk as comments are parts of a metheckfore they are
parts of the syntax tree.

Opdyke’s PhD thesis [7] defines refactor steps for OO langsiaff is com-
monly referenced and it is comprehensive work on the tomiwdver it was made
popular by [2]. It does not discuss the layout.

[5] analyzes the problem of handling macros, comments, aywlit in Erlang
refactoring. Like in our paper, it is also important for thelsors to preserve the
visual representation of the source code to be transforimédhey choose dif-
ferent principles for the implementation. Layout is enabda the token stream’s
level as follows (subsection 4.1): every token has a pre astiyhite space field,
and it can contain comments too. An “ad hoc” algorithm digidlee space be-
tween tokens into two segments. In our opinion, assignimgroents to tokens is
not suitable for the optimal behavior of program transfaiores. For this reason,
we assign comments to syntactical constructs.

Another paper [12] discusses preservation of style for @/@rograms, and
handling of macro expansions. One of its goals to minimize“tioise” created
by the program transformations in different version congystems. It also em-
phasizes the importance of layout preservation. A notaiffierdnce from our ap-
proach, that the documentary structure is stored in theatistyntax tree directly
(it is called LL-AST for Literal-Layout AST), but due to thishe complexity of
the syntactical analysis is increased. On the other haed,tPAST is unable to
describe that two tokens are in the same column. A similaragmh can be found
in[11].

1.8 CONCLUSION

We proposed a flexible solution for handling the low-levelisture of the source
code for refactoring and code analyzer tools. The solutias explained for the
F# programming language, but the proposed approach carapésado any other
programming language if it does not support macro expassioperability of the
approach is also supported by an implementation writterin F

To our knowledge, layered representation of the source badenot been
proposed so far in the literature.

REFERENCES

[1] The F# 1.9.6 Draft Language Specification, 09 2008. Miofb Research and the
Microsoft Developer Division, http://research.micrasocdm/en-us/um/cambridge

16 CHAPTER 1. DOCUMENTARY STRUCTURE OF SOURCE CODE

/projects/fsharp/manual/spec.pdf.

[2] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 1999.

[3] A. Goldberg. Programmer as readbEEE Software, 4(5):62—-70, 1987.

[4] J. Hughes. The design of a pretty-printing librargcture Notesin Computer Science,
925:53-96, 1995.

[5] R. Kitlei, L. Lovei, T. Nagy, and Z. Horvath. Layout pserving, automatically gen-
erated parser for Erlang refactoring?

[6] H. Li, C. Reinke, and S. Thompson. Tool support for redaictg functional programs.
In Proceedings of the 2003 ACM S GPLAN workshop on Haskell, pages 27-38. ACM
New York, NY, USA, 2003.

[7] W. Opdyke, D. of Computer Science, and U. of lllinois atidna-ChampaigrRefac-
toring object-oriented frameworks. University of lllinois at Urbana-Champaign,
1992.

[8] D. Roberts, J. Brant, and R. Johnson. A refactoring toolSmalltalk. Theory and
Practice of Object systems, 3(4):253-263, 1997.

[9] M. Van De Vanter. Preserving the documentary structdireoarce code inlanguage-
based transformation tools. First IEEE International Werkshop on Source Code
Analysis and Manipulation, 2001. Proceedings, pages 131-141, 2001.

[10] M. Van De Vanter. The documentary structure of sourceéecolnformation and
software technology, 44(13):767-782, 2002.

[11] M. van den Brand and J. Vinju. Rewriting with layout. Pnoceedings of RULE2000,
2000.

[12] D. Waddington and B. Yao. High-fidelity C/C++ code tréorsnation. Science of
Computer Programming, 68(2):64—78, 2007.

[13] P. Wadler. A prettier printertUnpublished manuscript, 1998.

