
László Lövei, Zoltán Horváth, Tamás Kozsik, Roland Király, Anikó Víg, and Tamás Nagy

Supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE IKKK, Ericsson Hungary, ELTE CNL, and OMAA-ÖAU 66öu2

● Erlang: programming language for telecom SW

○ Functional language with possible side effects

○ Built-in concurrency with message passing

○ Dynamically typed: no compile-time type checking

● A refactoring catalog for Erlang is being built

○ Object oriented refactorings not applicable

○ Haskell-like data type transformations not feasible

● Final goal is tool support for them

○ Find out if Erlang itself is a good platform for
refactoring

○ Trying to find methods for proven refactoring

Introduction

-module(ev).
-export([event/2]).
event(Srv, Ev) -> Srv ! {event, Ev}.
stop(F, Srv) -> F(Srv, stop).
calls(Srv) -> event(Srv, event),
 apply(ev, event, [Srv, event]),
 stop(event, Srv).

Refactoring in Erlang, a Dynamic Functional Language

Eötvös Loránd University, Budapest, Hungary

Implementation ideas

Properties of expressions

Refactoring data structures

Prototype experiences

Function reference tracking

● Source code is stored in a semantical graph

● The syntax tree is extended by attributes and edges
representing semantical information

○ Function calls linked with the function definition

○ Variable references linked with the binding
occurrence

○ Subexpressions are linked with their contexts

● Semantical links are calculated right after parsing

● Condition checks and transformations don't need
traversals, only fixed length paths

● Persistent graphs can be utilized to improve efficiency
in case of a large codebase

● Variables are bound a value only once (although we
don't know the type of that value)

● The binding structure defines which variables are
used or bound in an expression (extract function)

● Most language constructs are side effect-free, which
enables rearranging expressions (eliminate variable,
merge expression duplicates)

○ Message passing and BIFs introduce side effects

○ Functions that use them or call “dirty” functions are
“dirty” too

● 7 different refactorings are working

● User interface is provided through GNU Emacs

○ Handles selections and other user input

● Analysis and refactoring logic is written in Erlang

● Graph representation in a relational database

○ Graph manipulations are expressed in SQL

○ Fixed-length paths are described by joining tables

● SQL database didn't work out well

○ Inefficient connection with Erlang

○ Promising experiments with Erlang-specific
databases (Mnesia)

● Functions are identified by data tags called atoms

● Function calls can use runtime-generated function
names

● Dynamic constructs can be handled by different tactics

○ Type inference to find function names

○ Data flow analysis to find call places

○ Runtime
conversions

● Trivial function call transformations: reorder
function arguments and tuple function arguments

● A complex refactoring: introduce record, which
replaces tuples with records of given fields

server({Data, Info}) ->
 receive Req ->
 server({Data,
 handle(Req, Info)})
 end.

-record(state, {data, info}).
server(St=#state{}) ->
 receive Req ->
 server(St#state{
 info=handle(Req,Info)})
 end.

● Tuple instances that are computed from the starting
tuple need to be found

● Data flow of tuples and fields should be followed

● Ongoing work

calls(Srv) ->
 apply(ev, event,
 (fun([P1,P2])->[P2,P1] end)
 ([Srv, event]))

Other information

● Cooperation with Simon Thompson, University of Kent

● Project homepage: http://plc.inf.elte.hu/erlang/

