
Refactoring in Erlang, a Dynamic Functional Language∗

László Lövei, Zoltán Horváth, Tamás Kozsik, Roland Király,
Anikó Vı́g, and Tamás Nagy

Eötvös Loránd University, Budapest, Hungary

Abstract

Refactoring in object-oriented languages has been
well studied, but functional languages have received
much less attention. This paper presents our ideas
about refactoring in Erlang, a functional program-
ming language developed by Ericsson for building
telecommunications systems. The highlights of our
work is dealing with the strong dynamic nature of
Erlang and doing program manipulations using a
relational database.

1 The Erlang programming
language

Erlang/OTP [1] is a functional programming lan-
guage and environment developed by Ericsson,
designed for building concurrent and distributed
fault-tolerant systems with soft real-time character-
istics (like telecommunication systems). The core
Erlang language consists of simple functional con-
structs extended with message passing to handle
concurrency, and OTP is a set of design principles
and libraries that supports building fault-tolerant
systems.

Erlang is a functional language which means that
a program is run by successively applying func-
tions. Branches of execution are selected based
on pattern matching of data and conditional ex-
pressions, and loops are constructed using recursive
functions. Variables are bound a value only once
in their life, they cannot be modified. Most con-
structs are side effect free, exceptions are message
passing and built-in functions (BIFs).

∗Supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE
IKKK, Ericsson Hungary, ELTE CNL, and OMAA-ÖAU
66öu2.

The speciality of Erlang is its strong dynamic na-
ture. Variables are dynamically typed, there is no
compile time type checking. The identifiers of func-
tions are of a special data type called atom and they
can be generated at run-time and passed around in
variables. Execution threads are also created at run
time, and they are identified by a dynamic system.

The challenge in building an Erlang refactoring
tool is to cover as wide area of language constructs
as possible by static (compile-time) analysis, and
to identify the exact conditions when we can guar-
antee behaviour-preserving transformations.

2 Refactoring in Erlang

While refactoring in object-oriented languages has
been well studied [3], functional languages have re-
ceived much less attention, and most work is ori-
ented towards pure functional languages with a
strict type system. Our work has been focused on
those refactorings that are applicable in Erlang as
well and help us to develop a framework that makes
implementation of other refactorings easy.

2.1 Transforming expressions

Expressions are the basic building blocks of func-
tional programs, and many of the refactorings
move, restructure, or modify expressions. We found
that to preserve the behaviour of an expression,
the most important thing is to maintain the bind-
ing structure of its variables. We defined the bind-
ing structure using the concepts of variable scope
and visibility. Another expression-related concept
is whether an expression is side effect-free.

We have studied the rename variable and extract
function refactorings that use only these concepts.



2.2 Tracking function references

The most frequently used expression is the func-
tion application, and refactorings that transform a
function call, must transform the function defini-
tion accordingly. Unfortunately, finding the rela-
tion between function calls and function definitions
is not always possible by static analysis. Remember
that the identifier of a function is really a data tag.
Most function calls include this tag as a constant,
but it is possible to create the tag at run-time, and
there are built-in functions that call a function with
an argument list constructed at run-time.

We classified these constructs as directly sup-
ported (e.g. constant name and static argument
list), partially supported (e.g. static name and dy-
namic argument list) and not supported (e.g. name
read from standard input) calls, and plan to cover
a broader range using data flow analysis (e.g. func-
tion name stored in a variable, or lambda expres-
sions).

Refactorings that use only this kind of informa-
tion are rename function and reorder function argu-
ments, and generalisation needs the binding struc-
ture and function reference tracking as well.

2.3 Restructuring data types

Erlang has no static type information attached to
variables, but types exist in the language, and they
are strictly checked at run-time. Available com-
pound types are lists, tuples, and records, these
can be used to build more complex data struc-
tures. Sometimes the transformation of such a data
structure is desired, but it is hard to describe what
changes are to be made, and usually data flow anal-
ysis is required to find the expressions that manip-
ulate the data.

Our most recent work is the analysis of such
a transformation, when a record is introduced to
store the elements of a tuple. This refactoring
transforms the expressions that work with the same
(or slightly modified) tuple, and these expressions
can be found by a kind of data flow analysis. Track-
ing the way of a piece of data is easy when there are
no side effects, the complicating factors are function
references and constructs where more than one type
of data is handled.

A simpler refactoring on data structures we dealt
with is tuple function arguments.

3 Implementation

Our approach to refactoring is that we express the
side conditions and code transformations by graph
manipulation. We build a semantic graph starting
from the abstract syntax tree of the source code
and extending it with edges that represent seman-
tic relations between nodes. Semantic concepts like
variable scoping or function references are encapsu-
lated into the graph this way.

A working prototype software is built using these
concepts, written in Erlang. Building on previ-
ous experiences with Clean refactoring [2], we de-
cided to represent the semantic graph in a relational
database, and use SQL to describe the manipula-
tions. Every node type has a table that contains
the attributes of the nodes and the links to other
nodes (represented by their unique ID). A nice fea-
ture of this representation is that fixed length graph
traversals can be expressed by joining tables.

Refactoring Erlang programs is a joint research
with the University of Kent, building on expe-
riences with Haskell and Clean. While we are
sharing ideas and experiences, they are investi-
gating a completely different implementation ap-
proach using traversals on annotated abstract syn-
tax trees [4].

References

[1] J. Armstrong, R. Virding, M. Williams, and
C. Wikstrom. Concurrent Programming in Er-
lang. Prentice Hall, 1996.

[2] P. Diviánszky, R. Szabó-Nacsa, and Z. Horváth.
Refactoring via database representation. In The
Sixth International Conference on Applied In-
formatics (ICAI 2004), volume 1, pages 129–
135, Eger, Hungary, 2004.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[4] H. Li, S. Thompson, L. Lövei, Z. Horváth,
T. Kozsik, A. Vı́g, and T. Nagy. Refactor-
ing Erlang programs. In The Proceedings of
12th International Erlang/OTP User Confer-
ence, Stockholm, Sweden, November 2006.


