Generic syntactic analyser: ParsErl *

Robert Kitlei, Laszlo Lovei, Tamas Nagy, Anik6 Nagyné Vig,
Zoltan Horvath, Zoltan Csornyei
Department of Programming Languages and Compilers,
Eotvos Lorand University, Budapest, Hungary
{kitlei,lovei,n tamas,viganiko,hz,csz}@inf.elte.hu

Abstract

The increasing demand in automatic code transformation tools — which
can preserve the layout, and can handle the whole macro syntax — led us
to develop our scanner and parser tool. ParsErl is a generic syntactic
analyser for Erlang. The scanner and the parser are generated from an
XML definition of the grammar. The result of the scanning process is
a graph, which can be optimised or balanced for applications. The tool
can preserve the original layout of the source code, including the origi-
nal macro definitions. Our preprocessor creates connection between the
original source code’s tokens and syntax tree’s nodes. We can provide the
substituted and parsed code for the applications and we can generate the
original source code back, when it is needed.

1 Introduction

The increasing amount of codebase which has to be maintained resulted in
an increasing demand in automatic code transformation tools. For example,
refactoring tools which can change (usually applied in order to improve) the
structure of the code without changing its behaviour [2, 3, 4, 6, 5].

These tools work on a higher abstraction layer than textual format. The
usual approach is to apply syntax analysis that produces an abstract syntax tree
(AST) of the source code. The standard Erlang parser with the syntax_tools
application provides an interface to produce and work with such an AST [1, 7, 8].

The problem with this approach is that this parser was designed for code
generation. It provides an interface which can generate text from the AST,
but this result will be pretty printed, because the parser discards the layout,
whitespace, and punctuation while building the syntax tree. These information
are irrelevant for code generation but highly valuable for the code transformation

*Supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE IKKK and Ericsson Hungary.
A full technical paper about the design of the internal structure was submitted to CC2008.

tools. Preserving this information we can preserve the original layout in contrast
to pretty printing.

The other problem with the standard tools arise when the language supports
macros. Macros are usually substituted with their definition by a preprocessor
before parsing. The Erlang tools can support macros without substituting them
if they “behave” well. If a macro cuts syntactic entities in half, the tools cannot
parse it. This means that some code can be compiled, but cannot be parsed by
the standard tools before prepocessing.

In this paper we will show that these problems can be solved with a new
parser, if the design aim is the layout preserving, and the support of the full
macro syntax. Furthermore we will give an API which makes it possible to
apply the framework in different projects.

2 Motivation

The prototype version of our refactoring tool, RefactorErl, suffered from the
above problems. Because in refactoring tools it is a crucial point to be able to
support the whole syntax and to keep the layout as it was as much as possible.
This is very important, because the pretty printing makes it hard to follow the
changes made in the code, let alone carry out further changes even with the
refactoring tool not to mention by hand.

3 Structure of the tool

In Figure 1 we show the layers and parts of the tool. We generate the scanner
and the parser based on an extensible XML description of the Erlang grammar.
After the scanning and parsing process is done, an application can work on
the graph representation. Our layout preserving printer can restore the original
source code in textual format from the graph representation.

3.1 XML

Both the lexical elements and the syntactic rules, and the resulting structure
reside in the same XML file. This makes the definition easily adoptable, cus-
tomisable to language changes, and to different application needs. Obviously
the former happens really rare, because that would need changes in a lot of
applications, and could cause issues with backward compatibility.

3.1.1 Lexical elements

Lexical elements are described by the element lezical. Patterns (elements pat-
tern) are quite similar, only they don’t constitute an element themselves. Im-
portant patterns are the whitespace-and-comments before and after the tokens
(named PRE and POST), which are included in the token text themselves. Pat-
terns can be incorporated using a match element. Elements may further consist

application

graph

#

parser

parser preprocessed tokens |
generator ayout
(wmerl) Y preserving
t
@ preprocessor] et
scanner
generator token stream
(xmerl) with whitespaces
r

leex r

source code

scanner

Figure 1: The structure of ParsErl

of plain text, branches, optional and repeated parts, tagged by tezt, branches,
opt and rep respectively. There are some additional facilities for easier character
inclusion: chars-of and chars-but, which permit all characters included in (or

excluded of) a given set.
The following example shows the description of integers.

<lexical name="integer">
<match name="PRE"/>

<opt>
<branches>

<text>1</text>
<chars-of><range><from>0</from><to>6</to></range>
</chars-of>
</br>

<chars-of><range><from>2</from><to>9</to></range>
</chars-of>
</br>
</branches>
<text>#</text>
</opt>
<match name="Digit"/>
<rep>
<match name="Digit"/>
</rep>
<match name="POST"/>
</lexical>

The following regular expression is generated from this description:

{PRE} (1[0-6]| [2-9]1#)?{Digit}{Digit}*{POST}|

3.1.2 Syntax elements

The syntax elements describe the context free grammar rules. All rules with
the same head symbol are organised under a ruleset element. They may contain
rules that are not represented in the graph themselves: these are called copy-
rule. All other rules have to specify in which class do they belong. This way we
can simplify the syntax graph by storing only so much information as necessary.
For example, all different kinds of expressions are in class expr, and are not
distinguished from each other further on.

Rule elements (the right hand sides of rules) consist of tokens and symbols.
For the sake of brevity, elements optional and repeat are also available.

With the symbols we have to define how we want it to be connected to the
head symbol. For example the function clause’s pattern elements are connected
to it with a link tagged with pattern, the guards with guard and the body’s
elements with body. These tags will be used for information retrieval.

Rules may also contain attributes that are stored as additional informa-
tion in the graph during parsing. For example, guard sequences may contain
conjunctions and disjunctions; both are represented as an erpr node with the
appropriate kind as attribute.

The following example and Figure 2 show the rules for function clauses.

<ruleset head="FunClause">
<rule class="clause">
<attrib name="type">funcl</attrib>
<symbol name="Atom" link="name"/>
<token type="op_paren"/>
<optional>
<symbol name="Expr" link="pattern"/>
<repeat>
<token type="comma"/>
<symbol name="Expr" link="pattern"/>
</repeat>
</optional>
<token type="cl_paren"/>
<optional>
<token type="when"/>
<symbol name="Guard_seq" link="guard"/>
</optional>
<token type="arrow"/>
<symbol name="Expr" link="body"/>
<repeat>
<token type="comma"/>
<symbol name="Expr" link="body"/>
</repeat>
</rule>
</ruleset>

FunClause

type=funcl
name pattern guard body
l”-t
| Atom Expr |Guard seql Expr |

Figure 2: The function clause rule without the tokens

3.2 Scanner

The scanner is automatically generated from the XML definition with an XSLT.
The XSLT is written with the Erlang’s xmerl application [13, 14, 15]. The XSLT
transformation’s result is the input of the leex application [12].

The definition can be easily adjusted to keep the comments and the whites-
pace information or discard them. In our case we chose to attach the whitespace
information and comments to the lexical categories of the language, therefore
there is no whitespace token. The interface of this module is the standard
interface provided by the leex application.

3.3 Preprocessor

A middle layer has been introduced between the scanner and parser to be able to
support any kind of macros which are allowed in the languages definition. This
layer defines connection between the original source code’s tokens and syntax
tree’s nodes. This relation is not trivial because the syntax tree can only be
built when the macros had been substituted. Therefore our preprocessor has
to be aware of the structure being built by the parser. As a result of this
the preprocessor does not provide a standard interface for invocations. It is
embedded into the parser.

3.4 Parser

The parser is also generated from the XML definition. The XSLT transformation’s
result is the input of the yecc application [9, 10, 11]. The built structure can
be adjusted just by adjusting the definition in the XML. The API is extended
compared to the yecc’s default interface in order to get the correct result struc-
ture. Parsing one form at a time is supported, and additionally the extended
API provides means to parse a whole file as well.

3.5 Graph

A graph is the result structure of the parsing. The shape of the graph only
depends on the definition of the syntax in the XML file. Therefore based on our

preferences/needs the shape can be adjusted to a certain extent. Because the
yecc uses LALR-1 analysation method the structure has to be resemble a tree.

For example in our refactor tool we decided not distinguish between the
different expressions. The expressions’ type is always expression. The standard
parser’s expression types are just attributes.

4 Information retrieval

High level information retrieval is supported by a query language that makes
it easier to traverse graph structures with fixed depth. This query language
consists of path expressions. To evaluate it a start node and the list of links we
want to follow from the start node is required. The direction and filters of the
links can be given. Direction can be forward or backward. The possible filters
are:

Filter = {Filter, ’and’, Filter} | {Filter, ’or’, Filter} |
{’not’, Filter} | {Attrib, Op, term()}

Attrib = atom()

Op = ==’ | 2/=2 | =<2 | >=2 | <0 | >

The links also have indices which start at 1. Therefore it is possible to choose
one link or an interval of links.

Index = integer() | {integer(), integer(O} | {integer(), last}

Start, End means the indices larger or equal than Start and smaller than End.

For example (using our structure) if we want to retrieve the module name
of the source file we can write a path expression like this. Suppose we have the
root of the file in the Root variable:

path(Root, [{form, {kind, ’==’, module}}, {attr}])

The result would be a list containing one element. The module name is the
result node’s attribute which can be obtained by another function call.

5 Linking with other applications

The API demonstrated in Section 4 provides an interface to other applications
which can be easily used. The built graph structure can be fine tuned to specific
applications. The information retrieval mechanism - the functions, parameters
- do not change when the defined structure changes. These altogether yield a
highly adoptable/optimisable structure.

6 Conclusion and Future work

In this paper we have shown that it is possible to support the whole syntax
of the Erlang language with a parser which can retain the original layout of
the code. Furthermore, having the definition of the whole language and the
result structure defined in one XML file makes the language definition easily
adjustable to changes in the language. The resulting structure can be easily
adapted to any specific problem. For example balancing the resulting graph’s
height and width for optimising to the application’s algorithm. The framework
even makes it possible to add extra information to the graph which cannot be
derived directly from the syntactic rules.

The ifdef, ifndef macros introduce further difficulty for example consider
the following code:

-ifdef (debug) .

-define(LOG(X), io:format("{p,”p}: “p™n",
[?MODULE, ?LINE,X1)) .

-else.

-define(LOG(X), true).

-endif.

The macro’s body is different depending on the value of the condition. Even if
we work on the unsubstitued version of the source, we have to consider what
the substituted code would be.

A further development would be to develop the printing mechanism to be
able to parameterise it with design rules to enforce the same layout of different
developers.

References

[1] J. Barklund and R. Virding.
Erlang Reference Manual, 1999.
Available from http://www.erlang.org/download/erl spec47.ps.gz.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[3] H. Li, C. Reinke, and S. Thompson.
Tool support for refactoring functional programs.
Haskell Workshop: Proceedings of the ACM SIGPLAN workshop on
Haskell, Uppsala, Sweden, p. 27-38, 2003.

[4] H. Li, S. Thompson, L. Lévei, Z. Horvath, T. Kozsik, A. Vig, and T. Nagy.
Refactoring Erlang Programs.

In Proceedings of the 12th International Erlang/OTP User Conference,
November 2006.

[5] R. Szabo-Nacsa, P. Divianszky, and Z. Horvath.
Prototype environment for refactoring Clean programs.
In The Fourth Conference of PhD Students in Computer Science (CSCS
2004), Szeged, Hungary, July 1-4, 2004.

[6] Lovei, L., Horvath, Z., Kozsik, T., Kiraly, R., Vig, A., and Nagy T..
Refactoring in Erlang, a Dynamic Functional Language.
In Proceedings of the 1st Workshop on Refactoring Tools, pages 45-46,
Berlin, Germany, July 2007.

[7] Erlang 4.7.3 reference manual.
http://www.erlang.org/download /erl _specd7.ps.gz

[8] Erlang 5.5.5 reference manual.
http://www.erlang.org/doc/reference _manual /part _frame.html

[9] Torbjorn Térnkvist
How to improve the performance of YECC-generated Erlang (JAM)
parsers
Published in the Software Engineering Research Center of the RMIT
University (SERC), Melbourne, Australia. December 12, 1997.
http://www.erlang-projects.org/Members/mremond /serc/
how to_improve the p/block 10914819836344 /file

[10] Magnus Froberg
Automatic Code Generation from SDL to a Declarative Programming Lan-
guage
In Proceedings of the Sixth SDL Forum, Darmstadt, Germany, October
1993.
www.erlang.se/publications/sdl2erlang.ps

[11] yecc documentation.
www.erlang.org/doc/man/yecc.html

[12] Leex beta version download page
http://tinyurl.com/yv16tp

[13] Ulf Wiger
XMErl - Interfacing XML and Erlang.
In the Sixth International Erlang/OTP User Conference (EUC 2000),
Stockholm, Sweden, October 3, 2000.
http://www.erlang.se/euc/00/xmerl.ppt

[14] Mickael Rémond
XML and Erlang: Building a Powerful Data Management Tool.
In the Sixth International Erlang/OTP User Conference (EUC 2000),

Stockholm, Sweden, October 3, 2000.
http://www.erlang.se/euc/00/remond /mgp00001.html

[15] xmer]l documentation.
http://www.erlang.org/doc/apps/xmerl/

