
1

Supporting Secure Coding with RefactorErl1

Brigitta Baranyai, István Bozó[0000−0001−5145−9688],
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Abstract

In the era of the Internet there is a continuous demand for distributed systems which should
serve thousands of requests on a daily basis. But with this growing demand companies have
to face a growing number of cyber threats as well which can not only harm their customers in
the form of data theft or data loss but their own reputation as well. In order to improve the
security of the systems, there are several standards (CERT, OWASP’s Application Security
Verification Standard) and static analyser tools (CodeChecker, SpotBugs, SonarQube, Fortify)
to achieve this goal. Unfortunately, these tools only cover popular programming languages like
C++, Java, Python or TypeScript. In this paper, we identify secure coding issues for the pro-
gramming language Erlang, and group them into five categories. We introduce static analysis
algorithms to identify the presented issues. We also present a prototype for supporting secure
coding with RefactorErl which helps identifying vulnerabilities like OS injection, cryptography
or atom exhaustion related attacks in Erlang systems.

1 Introduction

As the programming industry matured, quality assurance became more and more important. Cer-
tainly a lot has changed since Erlang was initially introduced in the 80s. For any language to
remain relevant it is a necessity to adjust to these new requirements imposed by the industry. It is
important to try to close this gap that currently exists in the domain of static security analysers
in order to keep Erlang as relevant as it is today and to possibly increase its popularity in the
programming industry.

The change of the original concept of running Erlang on protected hosts, and the human
factor (e.g. inexperienced programmers, the lack of knowledge about a specific application) of the
development process makes it necessary to consider secure coding during the development of Erlang
applications as well.

The main contributions of this paper is providing a tool for the Erlang community to help
identifying security vulnerabilities in an early phase of the development process, therefore improv-
ing the security level of their Erlang applications. We defined checkers to identify the source code
fragments that violates the security rules. The checkers were defined using a set of static source
code analyses (e.g. data-flow, call-graph information) provided by RefactorErl.

The rest of the paper is structured as follows. In Section 2 we introduce the problem of secure
coding. In Section 3 we present Erlang security vulnerabilities we identified based on the language’s
idiosyncrasies. Section 4 describes RefactorErl, the static analysis tool developed by a research

1The research has been supported by the project ”Integrált kutatói utánpótlás-képzési program az informatika
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group at Eötvös Loránd University and its semantic query language which provides an ideal base for
implementing security checkers and make it available to developers. In this section we also outline
the algorithm for identifying the potential threats of an Erlang system. Section 5 demonstrates
the framework on some open-source Erlang projects. Finally, Section 6 discusses related work and
Section 7 concludes the paper and present future ideas for improving the tool.

2 Secure Coding

In software development one of the most important concepts is code quality. Besides the mainte-
nance cost of a not well written code base, there is also a higher risk of introducing bugs during
the development phase. In order to maintain code quality, developers should consider the following
aspects: availability, fault tolerance, reliability and early identification of possible vulnerabilities.
By using static analyser tools and continuous code reviews one can reduce the chance of introduc-
ing bugs but in some cases (permissive language syntax, toolset) these methodologies are simply
not good enough to keep the software completely bug-free.

Many distributed systems written in the popular programming languages like C, C++, Java
are using the concept of Shared Everything [1] which heavily relies on the idea of resource sharing
(memory, processing unit or data source). While it can have a positive impact on performance,
there are downsides as well, such as the higher risk of introducing vulnerabilities coming from the
inappropriate data encryption, race conditions or an error in a subcomponent leading to complete
system failures. These languages also often encourage mutable data types which often leads to
inconsistent state. In addition to that, various language specific idiosyncrasies [2] such as evaluation
related side effects, casting, overloading or the permissive language syntax like optional braces for
control statements can cause further issues.

Based on the Application Security Verification Standard [3] the most well-known vulnerabil-
ities are coming from inappropriate input validation, output encoding, authentication and pass-
word management, session management and access control, data protection, system configuration,
database security, file or memory management.

Erlang embraces the concept of Shared Nothing which means that the processes of the dis-
tributed network run isolated with their own resources. In addition to this, immutable data struc-
tures, pure functions, modularity and having fault tolerance as a core language concept also greatly
contribute to the hardening of the system against security attacks.

Despite the mentioned language concepts and features, many of the above vulnerabilities (file
management, input validation, authentication management, etc.) can still affect Erlang due to its
original design.

3 Secure Coding in Erlang

Erlang [7] was originally designed for implementing telecommunication systems. Back then these
systems demanded requirements [4] like reliability, availability, supporting large numbers of con-
current activities, distributed operations and having fault tolerance against software or hardware
errors. Nowadays these requirements are also applicable in other areas [5] like the social media, the
financial industry or the Internet of Things. For example, in the financial industry, the considera-
tions highlighted above are even more important. While the loss of a message or the inaccessibility
of a mobile device for a short time is not a critical issue, a failed financial transaction or downtime
of a trading system can have serious consequences.

As web applications came more and more popular, the distributed systems [6] were redesigned
from running on multiple core computers to the geographical distributed, web based grids. Due to
the fact that Erlang was mainly designed for private and secured networks, it does not provide a
safe communication layer which would be necessity against security attacks.
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In the following subsections we are describing some of the well-known issues [8, 9] to showcase
the vulnerability types that can be identified with RefactorErl [25, 26] as of now. We grouped the
identified issues into five categories:

• Interoperability mechanism related vulnerabilities

• Concurrent programming related issues

• Distributed programming related issues

• Injections

• Memory overload related attacks

3.1 Interoperability Mechanism Related Vulnerabilities

Erlang supports interoperability with modules written in other languages, such as C or Java.
There are three ways to do this: using Erlang ports where the external program runs outside of
the Erlang VM, running as dynamically loaded libraries (erl ddll) within the Erlang’s runtime
environment, or through Native Implemented Functions (NIF). These features should be used
cautiously. Without proper input validation the loaded files can cause undefined behaviour. Errors
coming from the port drivers or NIF functions can cause further instability or even the termination
of the Erlang runtime system.

3.2 Concurrent Programming Related Issues

First class support for concurrent programming is part of the language design since the beginning,
and it is one of the reasons Erlang is popular in this domain. Besides its advantages, there are some
concepts which can cause undefined behaviour in the system. These can be confusing to developers
just getting to know the language, so it is beneficial to show them. For example, it can lead to
instability if the target process terminates sooner than the link/1 function is called to begin a
connection attempt. A much safer option is to use the spawn link/1-4 function for creating and
connecting the processes with each other due to its atomic operations.

Although in most cases the isolated manner of the processes save applications from race con-
ditions, process starvation or deadlocks, changing the priority of processes can bring the process
scheduler into an undeterministic state.

In addition to the above issues, the usage of ETS tables can cause further unsecure behaviour.
Although data modification happens in an atomic and isolated way, the same guarantee does not
apply to table traversal when objects are changed, inserted or removed in parallel to the traversal.
These operations can result in inconsistency of the table. In order to avoid this and guarantee
consistency, the table should be fixed by calling the safe fixtable function before using traversal
operations like first/1, next/1, match/1-3, select/1-3.

3.3 Distributed Programming Related Issues

As more and more people use the Internet for their daily jobs and personal needs, there is an
increasing demand for distributed systems in many industries like telecommunication, finance,
social media and e-commerce. To ensure that these interactions are secure, encryption has to be
enabled between the nodes of the distributed network. Since at the beginning Erlang was mainly
used on private and secured networks, security considerations such as hardening the standard
library did not get as much emphasis as is customary for languages actively used in less secure
environments.

Due to this fact there is a high chance of potential security issues related to distributed pro-
gramming in Erlang. Since the Erlang VM only supports primitive access control, the connected
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remote nodes gain access not only to the distributed node but also to the machine itself on which
the node is running. In order to reduce the chance of giving unintended access to an unsafe node,
developers should be cautious of using the network kernel related functions. This includes allow/1
or connect node/1 from the net kernel module which allow connection of nodes into the network.

Some of the available options to support backward compatibility with legacy systems are con-
sidered unsafe. To prevent Man-in-the-middle attacks [12], it is recommended to avoid using the
following SSL-3.0 and TLS-1.0 protocol configuration options for the communication over sockets
via the ssl module:

• {padding check, false}: turns off padding check which makes Erlang programs unsecure
against POODLE attacks [10].

• {beast mitigation, disabled}: turns off BEAST mitigation which enables the chance of
the BEAST attack where the attacker wants to acquire a cookie of a user session.

• {fallback, true}: enables downgrade of TLS protocols to a less secure protocol.

• {dh, given with any binaries}: necessary for Diffie-Hellman key exchange which is not
supported anymore above TLS-1.3.

• {dhfile, given with any file names}: similarly to the previous settings, this is not sup-
ported anymore above TLS-1.3.

The crypto module gives access to low level cryptography primitives presented in the OpenSSL
libraries. Using these functions is discouraged in favor of higher level APIs to prevent program-
ming errors. With the evolution of the OpenSSL package some of the functions became obsolete,
for example the block encrypt/3/4, cmac/3/4, etc. and therefore not recommended to be used
anymore.

3.4 Injection

Based on the OWASP Top 10 Application Security Risks list, injection is one of the most com-
mon attack types which can occur in Erlang via OS commands (os:cmd/1/2, os:putenv/2),
file related operations (file:eval/1/2, file:script/1/2) or dynamically compiled and loaded
program code (e.g.: compile:file/1/2, code:atomic load/1, code:load binary/3). Without
proper input validation attackers can run malicious code or launch DOS attacks [11].

3.5 Memory Overload Related Attacks

In Erlang atom values are stored in a global atom table. It has a fix size which can be set by devel-
opers by passing the size at startup of the VM. Atoms created during runtime are appended to this
table but unused values are never removed. Reaching the capacity of the table while adding a new
value causes the VM to crash. In order to prevent atom exhaustion, developers should use dynamic
atom creation related functions such as (erlang:list to atom/1, erlang:binary to atom/1/2)
and xml parsing related functions (xmerl scan:file/1/2, xmerl sax parser:file/2) carefully
and with proper input validation. In case of xml parsing, Erlang provides event handlers for pre-
venting the internal or external entity expansion (internalEntityDecl or externalEntityDecl).

4 The Security Checker of RefactorErl

RefactorErl provides thorough syntactic and semantic analysis capabilities making it ideal for
implementing security checkers for the vulnerabilities mentioned so far. This section describes the
static analysis algorithms of the checkers to identify the related vulnerable code fragments and a
working prototype for implementing such security checkers.
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4.1 RefactorErl

RefactorlErl [16, 15, 13] is a static source code analyser and transformation tool developed by a
research group at Eötvös Loránd University, Budapest, Hungary. Its main purpose is to support
source code transformations without changing behaviour. But with its continuous development
now it also helps in understanding huge code bases, their maintenance or even investigating bugs
by tracing back their original values of the expressions. It runs on Linux, OS X and Windows.
Developers have the opportunity to use it in a way that is most convenient for them: it integrates
well with editors like Emacs, Vim, Visual Studio Code and Eclipse. One can use it through a web
interface or from the command line through interactive shell. The analyses of the tool can be run
on the entire project or specific files, on the source code or on the binary code.

RefactorErl represents the Erlang source code in a Semantic Program Graph (SPG) [17]. The
base of the SPG is an Abstract Syntax Tree (AST) containing the lexical and syntactic elements
calculated during the initial analysis. Then various semantic analysers (function analyser, data-flow
analyser, record analyser, variable analyzer, etc.) incrementally add static semantic information
to the AST and that results our SPG. We are querying information from the SPG during the
vulnerability checking analysis.

4.2 Detecting vulnerabilities with RefactorErl

The algorithm for identifying the potential threats of an Erlang application is similar for all the
attack types. First, we determine the function call locations which are associated with unsecure
operations like OS calls. Then we select the function parameters that can be associated with
potential vulnerabilities and run dataflow analysis on them. Developers can provide a whitelist of
functions for the input validator. Any function encountered which is on the whitelist is considered
reliable, and therefore passing the results of these functions as parameters is assumed safe. Finally,
we inspect the sensitive parameters of the analysed attack types by tracing back their origin. In most
of the cases a parameter with an unknown source could mean a potential risk for the application,
therefore such variables are automatically flagged as unsecure. We will use the Algorithm 1 to
illustrate how we can detect the OS injection with RefactorErl.

Algorithm 1: The algorithm for detecting OS injection

Function get calls for os(Fun)
Matchers ← [{os, [cmd, putenv]}]
OsFuns ← get calls for(Fun,Matchers)

FunParamTuples ← new list
for O ∈ OsFuns do

Param ← get expr params for(O,Matchers, get all children(O))
add to list({O,Param}, FunParamTuples)

end

DataFlowTuples ← get origins(FunParamTuples)
NonSafeDataFlowTuples ← get unsafe funs(DataF lowTuples)

FunsWithNoBody ← get funs no body(NonSafeDataF lowTuples)
ExportedFuns ← get exported funs(NonSafeDataF lowTuples)

return merge(FunsWithNoBody,ExportedFuns)

To store the unsecure operations essential for the analysis we are using macros in the format
illustrated below:
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1 -define(xml_usage , [{xmerl_scan , [file , string]},

2 {xmerl_sax_parser , [file , stream]}]).

The analysis starts with the function passed in as a parameter. Based on its Semantic Program
Graph we are collecting all the expressions which refer to the examined attack type, in our case
the cmd and putenv functions from the os module.

In order to find the sensitive parameters of the functions collected in the previous phase, we
are calling the get expr params for/3 function from the Algorithm 2 recursively. To identify the
function calls we are using a switch statement. If the input of the recursive call is an expression
with result, we identify it as a type of match expr. In this case we are picking the right side of
the equation which we can further analyse with the help of the Semantic Program Graph. The
subgraph we get as a result of the analysis will be the input of our next recursive call. We continue
this process until we get an expression with the type of application which means a function call
in the SPG. We provide the path to the unsecure parameters with higher order functions which
we call when we execute the block of the application case. In other cases we simply work with
both the left and the right subgraphs of the graph.

Algorithm 2: Querying the sensitive parameters

Function get expr params for(Expr,Matchers, FunDef)
ExprType ← get expr type(Expr)

switch ExprType do
case application do

SubExpressions ← get sub expressions(Expr)
MatchingExpressions ← new list
for SubExpr ∈ SubExpressions do

if member(SubExpr,Matchers) then
add to list(SubExpr,MatchingExpressions)

end

end
Params ← FunDef(MatchingExpressions)

end
case match expr do

Params ← get expr params for(get 2nd child(Expr), FunDef)
end
otherwise do

Params ← get all children(Expr)
end

end

return Params

With the help of the dataflow analysis [14, 16] we are tracing back the origin of the data
appearing in expressions and variables in order to collect information about its potential value at a
given point of the program execution or about the dependencies between the expressions. With this
process we can track the occurrences of data and in our case the fact that what is the source of the
examined parameter. To do so we run a ”reach” type dataflow analysis on the sensitive parameters
collected in the previous phase. This gives us all the expressions with their results containing the
examined parameter which is accessible from the analysed expressions.

In special cases the process can differ from the previously described, for example, if the result
of a function call is stored in a tuple data type like illustrated below:
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1 {ok , X} = io:read("Read: "),

2 os:cmd(X).

Following the previously described analysis, we would miss the io:read/1 function call, there-
fore the dataflow analysis should be run on one level higher, namely on the {ok, X} tuple expres-
sion. Therefore we have added an extra algorithm for embedded argument handling (Algorithm 3).

Algorithm 3: Dataflow analysis ran for sensitive parameters

Function get origins(FunParamTuples)
DataFlowTuples ← new list
for {Expr, Param} ∈ FunParamTuples do

Df ← data flow reach(Param)
MergedDf ← merge(Df, data flow reach(sel back(Df))
OuterDf ← merge(MergedDf, data flow reach(sel back(MergedDf)))
add to list({Expr, {Param,OuterDf}}, DataF lowTuples)

end
return DataFlowTuples

By setting the safe funs environment variable in the interactive shell of RefactorErl, developers
can specify a list of functions they want for the checker to assume to be safe. This feature can be
used to address certain false positives and to specify functions that take care of input validation.

1 ri:addenv(safe_funs , [{test_mod , [safe_fun]}]).

Using the dataflow analysis of the previous phase, we iterate through all the results and mark
those safe where any of the elements of the data flow references at least one of the functions listed
in safe funs. All the parameters marked safe can be ignored for the rest of the analysis.

Algorithm 4: Identification of the usage of the return values of ”bodyless” functions

Function get funs without body(Tuples)
ExprWithUnknownParams ← new list

for {Expr, {Param,Df}} ∈ Tuples do
FunBodyList ← get function body(get funs(Df))

for Body ∈ FunBodyList do
if is empty(Body) then

add to list(Expr,ExprWithUnknownParams)
end

else
Df ← data flow reach(Param)
if member(Body,Df) then

get funs without body({Expr, {Param,Body}}, ExprWithUnknownParams)
end

end

end

end

return ExprWithUnknownParams

Finally, in the last phase we collect all the expressions which contain a parameter with an
unknown origin. In our algorithm we differentiate two sources of the parameters resulted in vulner-
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ability: the ones of an exported function or the ones which are the return values of a function with
an unknown body. In both cases the parameters could mean a potential risk for the application,
therefore such expressions are automatically flagged as unsecure.

We consider a function ”bodyless” when the function body is unknown for the static analyzer.
For example the io:read/1 function is a ”bodyless” function which reads the data from the
standard input during the execution time. The behaviour of identifying the expressions with an
unknown parameter is demonstrated in Algorithm 4 as well.

First we query the body of the functions coming as a result of the previous phase. If the function
is unknown for the analyser, we flag it as a potential risk. Otherwise, we’re looking for matches
in a recursive manner between the result of the dataflow analysis and examined function body. In
case of a match, we consider the parameter as safe.

The Algorithm 5 demonstrates the identification of parameters coming from exported functions.
First we lookup the function which contains the examined expression and if that function is a
member of the list of the exported functions. If it is part of the list, we match the sensitive
parameter against the parameter of the exported function. Matching parameters could potentially
indicate fragile code.

Algorithm 5: Identifying parameters originated from exported functions

Function get exported funs(Tuples)
ExprWithUnknownParams ← new list
for {Expr, {Param,Df}} ∈ Tuples do

Functions ← get funs(Df)

for Fun ∈ Functions do
if is exported(Fun) then

ExportedFunParams ← get fun params(Fun)
if member(Param,ExportedFunParams) then

add to list(Expr,ExprWithUnknownParams)
end

end

end

end

return ExprWithUnknownParams

For some of the identifiable attack types the methodology might diverge. For example in order
to find the obsolete functions from the crypto module, it is enough to identify the location of
the examined function call, it is not necessary to check the parameters they are invoked with.
To prevent Man-in-the-middle attacks, we have to check the configuration settings of the SSL-3.0
and TLS-1.0 communication protocol related functions. For identifying ETS table traversal related
functions which are executed not in an atomic and isolated way, analyzing the function parameter
will not be enough, we also need to know that the table was fixed before the operation. For that we
need to trace back that the safe fixtable(TableId, true) call was applied for the table before
the traversal.

4.3 Semantic Query Language of RefactorErl

RefactorErl provides a semantic query language [18] to help developers with code maintenance,
exploring the code structure and its dependencies or simply to understand an unfamiliar code base.
Among other things developers are able to get syntactic and semantic information about Erlang
programs by querying the call chains, function calls appearing in expressions, record or macro
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references, function definitions and some entity related attributes like function arity or expression
types.

The units of the query language correspond to the semantic language elements of Erlang, which
include the following: files, functions, function parameters, expressions, variables, etc. Each of these
units has a set of selectors and properties. Developers can reveal the relationship between the enti-
ties by running queries using these selectors. The result of these queries will be the elements which
are conforming to the given requirements. Properties give some information about the character-
istics of the given entity, like the name or arity of the function. The result of the selectors can be
filtered by property related restrictions, logical expressions or comparison.

The following examples demonstrates the query language. Let us say we wanted to lists all
functions that are longer than 80 characters, then we can write a query like this:

1 mods.funs[max_length_of_line > 80]

More complex queries can be constructed as well. The following one lists all the function calls
of the bar function from the foo module which first argument might has the value error:

1 mods[name=foo].funs[name=bar]

2 .refs[.param[index =1]

3 .origin[type=atom , value=error]]

4.4 Currently Available Checks

To cover the vulnerabilities presented in the previous sections we defined the checks in RefactorErl
listed in Table 1.

Selectors Short description

unsecure calls Lists all the possible vulnerabilities

unsecure interoperability Lists interoperability related weaknesses

unsecure concurrency Identifies concurrency related issues

unsecure os call Checks for OS injection

unsecure port creation Identifies port creation related issues

unsecure file operation Lists unsecure file handling

unstable call Shows possible atom exhaustion

nif calls Identifies unsecure NIF calls

unsecure port drivers Lists the unsecure ddll usage

decommissioned crypto Lists the legacy functions from crypto module
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Selectors Short description

unsecure compile operations Shows unsecure compile/code loading related operations

unsecure process linkage Lists unsecure process linkage

unsecure prioritization Identifies unsecure process prioritization

unsecure ets traversal Lists unsecure ETS traversal

unsafe network Checks for unsecure kernel related operations

unsecure xml usage Identifies unsecure xml parsing

unsecure communication Lists unsecure communication related settings

Table 1: The available security checks in RefactorErl

These checks are available through the selectors that work on functions. The result of these
queries is a set of expressions containing the discovered vulnerabilities. Example queries:

1 mods[name=foo].funs[name=bar].unstable_call

2 mods[name=foo].funs[name=bar].unsafe_network

3 mods[name=foo].funs[name=bar].unsecure_ets_traversal

Developers can use the security checker through the command line tool, like shown in Figure 1.

Figure 1: Select unsecure calls through the RefactorErl interactive shell

They also have the opportunity to select the unsecure expressions through RefactorErl’s web-
based interface where they can not only see the context of the listed vulnerabilities but they can
also navigate easily among them (Figure 2).

5 Experimenting with the framework

To demonstrate the effectiveness of our solution, we selected a few open-source projects available
on github. Taking into account that we are performing static analysis that may take time on large
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Figure 2: Select unsecure calls through RefactorErl’s web interface

projects, we selected projects with different sizes and also domains. 2 Table 2 shows the number of
found vulnerabilities and their types. We found that the majority of the candidates were ets usage
and atom creation related 3, but the typical injection-like candidates were found as well. One might
realize that the size of the application does not correlate to the number of found vulnerabilities.

Project Num. Type of the vulnerabiliy LOC Time (sec)

helium/erlang v8 3
unsecure ets traversal (1),
unsecure port creation (1),

unsecure os call (1)
302 1

helium/miner 7
unsecure os calls (3),

unstable call (4)
6236 15

heroku/logplex 15
unsecure ets traversal (11),

unstable call (4)
10634 25

k2informatics/ranch 7 unsecure ets calls (7) 3052 7

relayr/gen coap 2 unstable call (2) 2076 6

Table 2: Example results

Let us take a closer look at one of these projects. We identified two atom exhaustion related
vulnerabilities in the relayr/gen coap source code, shown in Figure 3.

2The extensive evaluation of the results is an ongoing work.
3We also examined libraries from the source of the Erlang/OTP and found that the dynamic atom creation is

quite common (e.g. the asn library).
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Figure 3: Identified vulnerabilities in the relayr/gen coap source code

The resolve uri function is an exported function taking a URI’s scheme as an input and
converting it to an atom by the http uri:parse function. As the URI is taken from an untrusted
source, it can lead to atom exhaustion that can cause the Erlang VM to crash. Therefore we list
this as a potential risk for the user.

From the available static source code analysis tools only PEST (Primitive Erlang Security Tool)
[19] provides similar security inspections. To compare the tools we have run the checks provided
by the PEST tool for the relayr/gen coap source code, the result is shown in Figure 4.

Figure 4: Identified vulnerabilities in the relayr/gen coap source code with PEST

The identified vulnerabilities are related to the usage of the ssl module. The differences lie in
what methodologies the tools are using. Since PEST is based on simple text search it will show
every occurrence of the function calls of the ssl module regardless of the parameters passed to
these functions. PEST does not report the list to atom calls, as in the source code the module
name is omitted, therefore the erlang:list to atom rule does not match.

6 Related work

The early detection of potential vulnerabilities is recognised to be important in the software de-
velopment industry. There are a number of static analysis tools to help developers indentify such
issues like SonarQube [22], SpotBugs [21] and CodeChecker [20]. Most of these tools integrate well
into the popular IDEs and editors such as: IntelliJ, Visual Studio Code and Eclipse, and can be
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run as part of a Continuous Integration (CI) pipeline.
This topic is becoming more and more important in the Erlang community which is shown by

the increasing number of papers and discussions that try to raise security awareness [23, 24]. PEST
[19] is one of the already available tools to aid developers identifying security issues. It analyzes
the source code to detect interoperability related functions like NIF or port driver creation calls,
the usage of OS calls or the decommissioned functions from the crypto module. The tool can be
run as an escript from command line and provides some extra settings like expanding the checks
for the dependencies as well or setting the severity of the issues to filter out the less significant
vulnerabilities. The main downside of the tool that it is based on simple text search, so there
is a high chance for listing false positive results. Based on the thorough static semantic analysis
framework of RefactorErl we were able to produce more accurate results.

There is also another prototype [24] based on RefactorErl which identifies similar vulnerability
types. This work focuses on providing a systematic way to identify ”trust zones” in Erlang appli-
cations at the design phase. The potential benefit of this approach is that security verification can
be simplified by using these ”trust zones” as the basis of the static analysis.

7 Conclusion and future work

Secure coding is a more and more important topic in the era of the Internet. As the number of user
interactions and network traffic increases, we see a significant grow in the number of cyber-attacks,
which can not only harm customers, but it affects the reputation of companies as well.

In this paper, we presented some of the Erlang security vulnerabilities we identified during
our research, which are mainly connected to the language’s interoperability mechanisms and the
way concurrent and distributed programming was designed. We showcased the work we did in
RefactorErl to support secure coding in Erlang.

Although we are using first-order data-flow analysis that takes into account some runtime
context information, our results can be improved. We will focus on reducing false-positive cases
in the future using heuristics, dynamic information and higher-order data-flow analysis. However,
these may increase the runtime of our algorithms.

Our tool can be extended with additional rules to identify race conditions, obsolete cypher
algorithms from the crypto module, security level related settings, configurable analysis to further
enhance the user experience.

It is also possible to add checkers for other programming languages like Elixir which leverage
the Erlang VM. Since modules written in Erlang are available to be used in Elixir, there is a
potential to reuse the existing module specific checkers with minimal effort.
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[24] Fördős, Viktória: Secure Design and Verification of Erlang Systems, Proceedings of the
19th ACM SIGPLAN International Workshop on Erlang, pages 31–40, Association for Com-
puting Machinery, New York, NY, USA, https://doi.org/10.1145/3406085.3409011, ISBN
9781450380492, 2020

[25] Brigitta Baranyai: Funkcionális nyelvek és a statikus kódelemzéssel támogatott biztonságos
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