Supporting
Secure Coding
with RefactorErl

Brigitta Baranyai

Eotvos Lorand University SZECHENYI
Budapest, Hungary

* Growing number of cyber threats in the era of

Internet.

R E S EA RC H * |In order to improve the security of the systems,

there are several standards and static analyser

BACKGROUND tools

* The lack of security analyser tools in case of
Erlang.

-module(injection).

-export (lrun_cmd/1]). 1>injection:run_cmd("test.txt;1ls").

"Hello World! test.txt"
run_cmd(Input) ->

ogyecmd"eat “++ Inpat).

SECURE CODING

Distributed processes run isolated with their own
resources.

Immutable data structures.
Pure functions, modularity.

Fault tolerance as a core language concept.

03

Interoperability mechanism related vulnerabilities

Concurrent programming related issues

SECURE CODING

Distributed programming related issues

IN ERLANG

Injection

Memory overload related attacks

INTEROPERABILITY MECHANISM
RELATED VULNERABILITIES

Using Erlang ports: Using dynamically loaded libraries (erl_ddll) or NIF:
-module (complexl). -module (complex2) .
-export([start/1, init/1]). -export ([foo/1]).

-on_load(init/0).
start (ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl). init() ->
{ok, ExtPrg} = io:read("Provide a program..."),
init (ExtPrg) -> ok = erlang:load_nif (ExtPrg, 0).

register(complex, self()),

process_flag(trap_exit, true),

loop(open_port ({spawn, ExtPrg}),
[{packet, 2}])).

foo(_X) -> exit(nif_library_not_loaded).

06

CONCURRENT PROGRAMMING

T

RELATED ISSUES

Not connecting processes in an atomic way

Modifying process priority

1

ETS traversal without table fixes

DISTRIBUTED PROGRAMMING ’
RELATED ISSUES

Using the network kernel SSL-3.0 and TLS-1.0 protocol With the evolution of the
related functions: configuration options for OpenSSL package some of the
communication over sockets functions of the crypto module
net kernel:allow/1, via the ssl module which can became obsolete:
net_kernel:connect_node/1, call forft Man-in-the-middle

net_kernel:start/1 attacks: crypto:block_encrypt/3/4,

crypto:block_decrypt/3/4,

crypto:cmac/3/4, crypto:hmac/3/4, ...

ssl:connect("example.net", 443, [
{padding_check, false},
{beast_mitigation, disabled},
{fallback, true}

1)

08

OS commands called with
unknown input:

-module(injection).
-export([run_cmd/1]).

run_cmd(Input) ->

os:cmd("cat " ++ Input).

INJECTION

File related operations with
unknown input data:

-module(injection).
-export([eval/1]).

eval(Input) ->
file:eval(Input).

Dynamically loaded program
code coming from unknown
data source:

-module(injection).
-export([load/1]).

load(Input) ->
code:load_file(Input).

MEMORY OVERLOAD RELATED
ATTACKS

Dynamic atom creation related XML parsing related functions without the
functions: usage of proper event handlers for
preventing the internal or external entity
parse_uri(Input) -> expansion:

http_uri:parse(Input, [{ipv6_host_with_brackets, truel}]).

parse_xml (Input) ->

xmerl_sax_parser:stream(Input, []).

09

10

REFACTORERL

Static source code analyser tool.

Source code transformations without behaviour
change.

Helps in understanding huge code bases, their
maintenance or even investigating bugs by tracing

back their origin.

Integrates well with editors like Emacs, Vim, Visual
Studio Code and Eclipse.

Provides a web interface or command line tool
through interactive shell.

THE SECURITY
CHECKER OF simitaralgorithm for all the attack types.

REFACTORERL

* Determine the function call locations which are associated with unsecure operations.

* Select the functions parameters that can be associated with potential vulnerabilities.

* Run dataflow analysis on the sensitive parameters.

* Flag parameters with unknown source.

* Filter out functions provided by the users for input validation.

) SEMANTIC QUERY LANGUAGE
OF REFACTORERL

Provides syntactic and semantic information about Erlang
programs by querying the call chains, function calls
appearing in expressions, etc.

The units of the query language correspond to the
semantic language elements of Erlang, which include the
following: files, functions, function parameters, expressions,
variables, etc.

localhost

QUERIES Logged in as brigi

» semantic query here SRR Queue

Query results History

Execute a query or select one from the No history entry yet.
history to see results.

Database browser

Function quicklist

RESULTS OF THE RESULTS OF THE
SECURITY CHECKER SECURITY CHECKER

OF REFACTORERL OF PEST

(refactorerl@localhost)31> ri:qg("mods.funs.unsecure calls").
coap client:resolve uri/1
{ok, {Scheme, UserInfo, Host, PortNo, Path, Query}} =
http uri:parse(Uri, [{scheme defaults, [{coap, ?DEFAULT COAP PORT},
{coaps, ?DEFAULT COAPS PORT}]}])
coap server content:filter/2
filter(
case binary:split(Search, <<$=>>) of
[Name®, Value®] ->
Name = list to atom(binary to list(Name®)),

brigi@debVM:~/Projects/erlang$ ~/Projects/pest/pest/pest.erl
-r -s 0 relayr/gen coap/ build/default/lib/gen coap/ebin/
15: Keep OpenSSL updated for crypto module use (run with "-V

Value = wildcard value(Value®), crypto”)
lists:filter(coap dtls listen.beam:19 (ssl: /)
fun (Link) -> match link(Link, Name, Value) end, coap dtls socket.beam:[32,43,47,60,64] (ssl: /)
Links); brigi@debVM:~/Projects/erlangs [
Else ->
Links
end,
Query)

ok
(refactorerl@localhost)32> |

Additional rules to identify race

conditions, obsolete cypher algorithms
from the crypto module.

TURE WORK

Add security level related settings,
configurable analysis to further enhance
the user experience.

15

THANK YOU FOR
YOUR ATTENTION!

This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project was
supported by the European Union, co-financed by the European Social Fund.

SZECHENYI @
European Union KR
o o European Social x *
: Fund * a K

HUNGARIAN
GOVERNMENT

INVESTING IN YOUR FUTURE

