
1. User Manual of the refactorer

1.1. Installation

1.1.1. Windows

We have an install tool to make it just a few click to enjoy the refactorer.
You should follow the following steps:

1. Start setup.exe

2. Choose your language (at the moment english and hungarian)

3. Follow the instructions, read and accept the license agreement.

4. After finishing the setup, you can try your tool by opening an .erl file
in your emacs editor (do not forget, that you need a live erlang node).

1.1.2. Linux, MacOS, Solaris

1. The tool needs the following components to be installed on your com-
puter:

(a) Emacs: you can download it from

http://www.gnu.org/software/emacs/

(b) Distel: you can download it from

http://fresh.homeunix.net/ luke/distel/ (the tool is working with
the 3.2 version or newer, if you have older version, and do not want
to upgrade, please contact us, and we will send you a differrent
refactor.el file)

(c) Erlang: you can download it from

http://www.erlang.org/

(d) MySQL: you can download it from

http://www.mysql.com/

2. Copy the refactoring tool’s directory to wherever you want it.

3. Make sure, that your .emacs file contains the followings:

1



(add-to-list ’load-path "/home/lestat/refactor/repos/trunk/tool")

;; Change the path to your refactoring source directory,

;; which contains the ebin directory with the beam files

(add-to-list ’load-path "/usr/local/share/emacs/site-lisp/distel")

;;Change the path to your distel directory

(require ’distel)

(distel-setup)

(require ’refactor)

(refactor-init)

4. Add the following parameters when starting the erlang node, which
refactoring tool will connect to:

• -sname refactor — The name is optional, you should give the same
name, when the refactorer ask the node name to which to connect.

• -pz .../tool/ebin .../distel/ebin —- The directory of your refactor
beam files and distel binary files

1.2. Starting the applications

You have to start the application and initialise the database before he start
to put the source code into the database.

At first you have to start an Erlang node by running Erlang. You
have to start Emacs and open the .erl file, which he want to put into the
database (You can find a basic Emacs tutorial in the Section 2, if you are not
familiar with it). If an Erlang source code is open, an Erlang menu appears
in Emacs as shown in the Figure 1.

1.3. Initialise the database

You to choose the Initialise database command from the Erlang/Refactor
menu point as shown in the Figure 2 or use the shortcut(C-c C-e i, which
means Control-c Control-e and than i (without Control) buttons).

2



1. ábra. The Erlang menu in Emacs

2. ábra. Initialise the database

3



The program will ask for the name of the Erlang node down in the mini-
bar. The name can be copied from the running Erlang as shown in the Figure
3.

3. ábra. Getting the name of the Erlang node during the initialisation

When the initialisation is ready the following message appears in the
minibar: *Initialised*.

1.4. Loading the source into the database and checkout

it

After you opened the .erl file, which you want to put into the database,
you have to choose the Into_db and reload from there command from the
Erlang/Refactor menu point as shown in the Figure 4 or use the shortcut (C-
c C-e n). When the initialisation is successfully done, the following message
appears in the minibar: *Reloaded*. In the same time the program displays
the pretty-printed version of the source code in the same window. The current
file/module remains in the database until the next initialisation. If you put
the newer version of the same file into the database, the previous version will
be deleted, and the new file will be parsed. If you want to put more than one
file into the database, you can open them and put them into the database in
the same way. The database will contain and handle all files until the next
initialisation.

4



4. ábra. Into_db and reload from there

5



If you once have put the source into the database at any time you can ask
for the latest version of the source by choosing the Check out latest version

in the database command from the Erlang/Refactor menu point as shown in
the Figure 5. When the checkout is successfully done, the following message
appears in the minibar: *Reloaded*.

5. ábra. Check out latest version in the database

1.5. Executing the refactorings

Before you want to execute a refactoring make sure, that the source is already
in the database. For example, if you previously edited the source, save the
changes and put the source into the database.

6



When you are executing several refactoring after each other with no edit-
ing between them, you do should not put the source into the database again.
The refactoring is executing inside the database, and just check out the source
in the end.

You can start a refactoring by choosing its command from the menu or
using its shortcut. NOTE! Make sure, that you are on the needed position
or you selected the needed expression(s).

For example the starting of the reorder function parameters refactoring
can be seen in the Figure 6.

6. ábra. Reorder the function parameters refactoring

The result message of the refactoring can be seen in the minibar. If there is
a warning, the refactoring was executed, just you get this warning.

1.5.1. Rename variable

The aim of the refactoring. Find and rename all occurrences of the
pointed variable to the new name.

7



Parameters. You have to stand on the needed position, when you choose
the refactoring from the menu (Rename variable or Rename) or start it with
shortcut (C-c C-e r). The other parameter will be asked during the execution
in the minibar.

• Position of the cursor: Somewhere inside in one occurrence of the vari-
able.

• New name: The new name of the variable.

Preconditions and restrictions. The new name can not be a reserved
word in Erlang, in that case the tool returns with an error message. If the
new name causes some binding problems with already existing variables in
the same scope, the tool will return with the error message and the position
of the caused problem.

1.5.2. Rename function

The aim of the refactoring. Find the definition and every call of the
function and rename to the new name.

Parameters. You have to stand on the needed position, when you choose
the refactoring from the menu (Rename function or Rename) or start it with
shortcut (C-c C-e r). The other parameter will be asked during the execution
in the minibar.

• Position of the cursor: Somewhere inside the name of the function.

• New name: The new name of the function.

Preconditions and restrictions. The new name has to be a legal function
name (starting with capital letter and not the name of a built in Function),
in other case the tool returns with an error message. The new name can not
cause name clash neither in the current module (existing functions, import
list) nor in other modules, if the function is exported.

1.5.3. Reorder function parameters

The aim of the refactoring. Change the order of the function parameters
in the definition and in every call of the function

8



Parameters. You have to stand on the needed position, when you choose
the refactoring from the menu (Reorder function parameters) or start it with
shortcut (C-c C-e o). The other parameter will be asked during the execution
in the minibar.

• Position of the cursor: Somewhere inside the name of the function.

• New order: The new order of the parameters as a permutation of the
natural numbers of 1 .. arity separated by spaces or commas.

Preconditions and restrictions. None

1.5.4. Tuple function parameters

The aim of the refactoring. Change the way of using some arguments
at the definition and at every place of call for a given function by grouping
some arguments into one tuple argument.

Parameters. You have to stand on the needed position, when you choose
the refactoring from the menu (Tuple function parameters) or start it with
shortcut (C-c C-e t). The other parameter will be asked during the execution
in the minibar.

• Position of the cursor: Somewhere inside the starting parameter of the
tuple

• Number of the tuple elements: The integer number of the new tuple’s
elements.

Preconditions and restrictions.

• The given position must be within a formal argument of a function
definition.

• The function must be a declared function, not a fun-expression.

• The given number must not be too large.

• No name clash if the arity is changing (not only in the current module
if the function is exported).

9



1.5.5. Eliminate variable

The aim of the refactoring. All instances of a variable are replaced with
its bound value in that region where the variable is visible. The variable can
be left out where its value is not used.

Parameters. You have to stand on the needed position, when you choose
the refactoring from the menu (Eliminate variable) or start it with shortcut
(C-c C-e e). The other parameter will be asked during the execution in the
minibar.

• Position of the cursor: Somewhere inside in one occurrence of the vari-
able.

Preconditions and restrictions.

• It has exactly one binding occurrence on the left hand side of a pattern
matching expression, and not a part of a compound pattern.

• The expression bound to the variable has no side effects.

• Every variable of the expression is visible (that is, not shadowed) at
every occurrence of the variable to be eliminated.

1.5.6. Merge subexpression duplicates

The aim of the refactoring. The chosen expression is bound to a variable
of the user’s choice and all instances of the original subexpression are changed
to the variable.

Parameters. You have to stand on the needed position, when you choose
the refactoring from the menu or start it with shortcut. The other parameter
will be asked during the execution in the minibar.

• Selected code part: it should be the extractable code part (expression
or sequence of expressions).

• Name: the name of the new function.

10



Preconditions and restrictions.

• The selected expression has to be valid.

• The given name cannot clash with one that already exists in the given
context and has the same scope.

• The transformation cannot be executed of the expression is

– in the head of list comprehension,

– in a generator pattern,

– in a clause guard,

– in a clause pattern or

– in a macro.

1.5.7. Extract function

The aim of the refactoring. An alternative of a function definition might
contain an expression (or a sequence of expressions) which can be considered
as a logical unit, hence a function definition can be created from it. The
extracted function is lifted to the module level, and it is parameterised with
the „free” variables of the original expression(s): those variables which are
bound outside of the expression(s), but the value of which is used by the
expression(s).

Parameters. You have to stand on the needed position, when you choose
the refactoring from the menu (Extract function) or start it with shortcut
(C-c C-e f). The other parameter will be asked during the execution in the
minibar.

• Selected code part: it should be the extractable code part (expression
or sequence of expressions).

• Name: the name of the new function.

11



Preconditions and restrictions.

• The name of the function to introduce should not conflict with another
function, either defined in the same module, or imported from another
module (overloading). Furthermore, the name should be a legal func-
tion name.

• The starting and ending positions should delimit a sequence of expres-
sions.

• Variables with possible binding occurrences in the selected sequence of
expressions should not appear outside of the sequence of expressions.

• The extracted sequence of expressions cannot be part of a guard se-
quence.

• The extracted sequence of expressions cannot be part of a pattern.

• The extracted sequence of expressions cannot be part of macro defini-
tion.

• The extracted sequence of expressions cannot be part of a
list_comprehension node.

• If the selected sequence of expression started with brackets, you should
drop out these brackets.

2. Basic Emacs tutorial

All the basic functionality which an editor provides are available through the
File, Edit, Buffers menus’ menu points:

These basic functionalities are for example

• Open File: File/Open File...

• Close File: File/Close(current buffer)

• Quit: File/Exit Emacs

You can select an area with a mouse, and you can make the following
editings:

12



• Copy: Edit/Copy

• Cut: Edit/Cut

• Paste: Edit/Paste

Switch between opened files: In the Buffers menu point all the cur-
rently opened files are listed. Selecting one of them immediately shows that
in the editor.

If you are comfortable with these methods you can try to use the key-

board shortcuts too:

• Open File: Control-X and after that Control-F (C-x C-f)

• Quit: Control-X and after that Control-C (C-x C-c)

• Copy: Alt - W (A-w)

• Cut: Control - W (C-w)

• Paste: Control - Y (C-y)

• Switch between opened files: Control - B Switch back to the last edited
file, or type in the name of the opened file (Tab auto complete is avail-
able) and press ENTER.

13


