
RefactorErl 0.9.11.10 Manual

Welcome to RefactorErl, the static source code analyser and refactoring tool
for Erlang programs! This document will guide you through the basic usage of
the software.

Contents

1 Installation and configuration 2
1.1 Required software . 2
1.2 Compilation . 2
1.3 User interfaces . 3

2 Using RefactorErl from the console 4
2.1 General usage . 4
2.2 Module and function dependencies. 9
2.3 Interface layers . 13
2.4 Server management command list 14
2.5 Running dynamic call analysis 15
2.6 Transformation command list . 16
2.7 Scriptable RefactorErl interface 18

3 Using RefactorErl in the command line 21

4 Web interface 23
4.1 Installation . 23
4.2 Shutting down . 24

5 Old web interface for semantic queries 30
5.1 Installation . 30
5.2 Starting and stopping the web server 31
5.3 Usage . 31

6 Querying semantic and syntactic information 33
6.1 Metric queries . 33
6.2 Metric analyser mode . 38
6.3 Semantic queries . 42
6.4 Metric queries embedded into semantic queries 55

1

7 Basic usage in Emacs/XEmacs 60
7.1 Configuration in XEmacs/Emacs. 60
7.2 RefactorErl mode . 61
7.3 The “Refactor” menu . 61

8 Using refactorings 66
8.1 Rename function . 66
8.2 Rename header . 67
8.3 Rename macro . 68
8.4 Rename module . 69
8.5 Rename record . 71
8.6 Rename record field . 72
8.7 Rename variable . 73
8.8 Move function . 73
8.9 Move macro . 76
8.10 Move record . 77
8.11 Eliminate function call . 79
8.12 Eliminate macro substitution . 81
8.13 Eliminate fun expression . 82
8.14 Eliminate variable . 83
8.15 Introduce function . 84
8.16 Introduce import . 86
8.17 Introduce function argument . 87
8.18 Introduce record . 90
8.19 Introduce tuple . 91
8.20 Introduce variable . 93
8.21 Transform list comprehension . 94
8.22 Reorder function parameters . 97
8.23 Generate function specification 98
8.24 Upgrade interface: regexp→re . 99

9 Module clustering 101
9.1 The Emacs interface for clustering 101
9.2 Console interface of clustering . 102

10 Using RefactorErl in VIM 104
10.1 Installation . 104
10.2 Menu and command structure . 104
10.3 Position based refactorings . 107
10.4 Interaction . 108
10.5 Semantic queries . 108

2

11 Using RefactorErl in Eclipse 109
11.1 Installation . 109
11.2 Database management . 111
11.3 Executing refactoring transformations 111
11.4 Executing semantic queries . 113
11.5 Clustering . 114

12 Supporting undo/redo mechanism in Emacs 115
12.1 Installation . 115
12.2 Usage . 115
12.3 Examples of behaviour . 116

3

1 Installation and configuration

Now RefactorErl comes with two version. One is the ordinary RefactorErl tool,
that uses MNESIA for the database storage. The other one uses a new C++
database storage model, and that makes the version much more faster than the
other one. Later we refer to the C++ database version as NIF, because it uses
the Erlang NIF library.

1.1 Required software

• Erlang/OTP R14B03 (or newer) is required to compile and run Refactor-
Erl.

• While not required, having a standard make makes the installation of the
tool much easier.

• The current version of RefactorErl is available from
http://plc.inf.elte.hu/erlang/dl/.

And if you want to use the NIF version, then there is an additional require-
ment:

• g++ 4.3.6 (or newer).

Under Unix based systems you can install gcc, which contains g++ compiler.
Under Windows you can have g++ compiler, if you install MinGW. You can
download it from http://www.mingw.org/. It is important that your PATH
environment has to contain g++.

1.2 Compilation

Unpack the source package. In the following, we refer to the unpacked
refactorerl-0.9.11.10 Mnesia or refactorerl-0.9.11.10 NIF directory as
the root directory of the tool.

Compilation using make. If you have a standard make tool installed, com-
pilation is as easy as running

make

in the root directory of the tool. Running this command produces the docu-
mentation as well.

Compilation needs access to the Erlang commands erlc and erl.

Direct compilation. If you don’t have make, you can compile RefactorErl by
entering the following command in the root directory:

bin/referl -build tool

4

http://plc.inf.elte.hu/erlang/dl/
http://www.mingw.org/

An additional parameter is needed if your PATH environment does not contain
the Erlang compiler.

bin/referl -build tool -erl PATH_TO_ERL

1.3 User interfaces

RefactorErl has several interfaces: Erlang console (Sections 2 and 2.7), CLI (Sec-
tion 3), Web interface (Section 4), (X)Emacs (Section 7), (G)Vim (Section 10)
and Eclipse (Section 11).

5

2 Using RefactorErl from the console

This section introduces the console usage of RefactorErl, as implemented in the
module ri, which stands for RefactorErl Interface.

2.1 General usage

Starting the tool. First, build the tool as described in Section 1. Then,
starting from the base directory of RefactorErl, run

bin/referl

under Linux or

bin/referl.bat

under Windows. For further parameters, use the -help option.

-erl PATH Path to the Erlang Executable to use
-base PATH Path to the RefactorErl base directory
-name NAME Erlang node name
-server Start in server mode (no shell is started)
-client Start in client mode (no server is started)
-build TARGET Build TARGET (e.g. tool, doc, clean)
-emacs Start as an Emacs client
-yaws Start with yaws web server
-yaws path PATH Path to the Yaws ebin directory
-yaws name NAME Set yaws server name
-yaws port PORT Set yaws port
-yaws listen IP Set yaws IP
-nitrogen Start with Nitrogen
-browser root Set the file browser root directory
-images dir Set root directory, where generated

images will be written
-help Print this help text

Table 1: bin/referl options

If the environment variable REFERL_DIR is set, the tool will use this directory
as the base Mnesia directory (similar to invoking erl -mnesia dir ’$REFERL_DIR’

from the command line). Also, the tool will save other files (e.g. log files) in
this directory.

Getting help. General help can be acquired in ri by

ri:help().

or even shorter as

6

ri:h().

This function lists several topics, on which further help is available as

ri:h(Topic).

If the name of a function is known, specific help can be acquired by adding
an _h postfix to the name. For example, help for the function add is available
as

ri:add_h().

Compiling the tool. The tool can be recompiled by invoking

ri:build().

This function can also take a list of build parameters. This feature is mostly
used through development. Note that if you use the NIF version, then it will
not compile the C++ source code.

Managing files. You can add files to the RefactorErl database by calling the
add function with either a filename as a string or a module name as an atom.
Note that in the latter case, ”ri” defaults to the current working directory
(which you may work around by including a path in your singe-quoted atom).
If you specify a directory instead of a regular filename, then it will be recursively
traversed. You may just as well give a list of atoms or strings to add more files
at once. All of the following example commands would add the same file:

• cd(dir), ri:add(modname).

• ri:add(’dir/modname’).

• ri:add([’dir/modname’]).

• ri:add("dir/modname.erl").

• ri:add("/current/dir/modname.erl").

The module displays the progression of loading.
Removing files from the database is similarly easy and also recursive, except

for one difference. As the system by the time you want to remove a module must
know the exact location of the said, you need not restrict yourself to dropping a
module relative to the current directory, but must in exchange use real module
names that do not contain path delimiters. The following will equally work:

• ri:drop(modname).

• ri:drop([modname]).

• ri:drop("dir/modname.erl").

7

• ri:drop("/current/dir/modname.erl").

Modules can be loaded as applications, but the base of your library has to
be set before:

ri:addenv(appbase, "path/to/my/applib").

You can check the already given application base directories:

ri:envs().

Let’s see an example:

(refactorerl@localhost)18> ri:envs().

output = original

appbase = "/usr/local/lib/erlang/lib"

(refactorerl@localhost)19> ri:add(usr, synatx_tools).

Application synatx_tools not found under usr

not_found

(refactorerl@localhost)20> ri:add(usr, syntax_tools).

Adding: /usr/local/lib/erlang/lib/syntax_tools-1.6.7.1/src

...

You can also set include directories to your include files using:

ri:addenv(include, "path/to/my/include").

It is possible to delete the defined environment variables:

ri:delenv(include).

Loaded files can be saved using

ri:save(Filename).

For convenience, both the filenames and the directory names can be given
as atoms as well as strings.

The list of loaded files can be obtained by calling

ri:ls().

This call also displays the status of the loaded files (error or no_error).
If the module m is loaded,

ri:ls(m).

will give information about the functions, records and macros in the file.
The contents of a file can be listed by

ri:cat(m).

8

Loading BEAM files. Usually, Erlang source files (having the extension
.erl) are loaded into RefactorErl. In addition, RefactorErl is also capable of
loading compiled .beam files.

ri:add("compiled.beam").

Note that this feature is applicable only to those .beam files that were com-
piled with the debug_info option. Also note that the resulting file will be pretty
printed by RefactorErl.

Using transformations. Transformations can be called using their abbrevi-
ated names, and the list of required parameters. These commands are listed in
Section 2.6.

There is another way to call a transormation. This way let the user to
choose: user want to specify all of arguments or not. There are lots of cases
when the user can not specify all of the required arguments. In this case the
tool can help the user with interactions. The tool ask questions and the user
has to answer it to specify the missing arguments. The interactions also work if
there is some problem with the given arguments. For implemented interaction
details, see the transformation descriptions.

The following example shows how an interaction looks like:

Figure 1: Interaction example

The example uses the Rename function transformation. This transformation
needs a function to be specified. In this example we do not give any argument,
so the tool need to ask for. First it asks for a module to know where it should
search for functions. Then it asks the user to select a function. If user has
to answer with ’yes’ or ’no’. Then if the user specified a function, the tool
asks for a new name. If everything works fine (no illegal parameter given) the
transformation will rename the specified function to the given new name.

9

Manipulating the graph. You can reset RefactorErl by invoking

ri:reset().

This will remove all loaded files. This function should be called if the graph
gets corrupted.

You can add a checkpoint using

ri:backup().

If the transformations you have performed are not satisfactory, you can go
back to the previous checkpoint using

ri:undo().

In the NIF version it is little different:
You can create backups with ri:backup/0 or ri:backup/1 and you can load
these backups with ri:restore/1.

When execute a transformation a backup will be created, which name differs
from the ordinary backups, and the ri:undo/0 function will restore that.

Inspecting the graph. You can draw the semantic representation graph of
RefactorErl by calling

ri:graph().

This function produces a .dot file (by default, graph.dot, although this can be
customised), which can be transformed to several visual formats using Graphviz.
One of these transformations is available from RefactorErl for convenience:

ri:svg().

The representation can be filtered:

ri:svg(OutFile, Filter).

where Filter is one of the following:

• all: default, all edges except environmental ones are shown

• syn: only syntactic edges are shown

• sem: only semantic edges are shown

• lex: only lexical edges are shown

• all_env: all edges are shown, no filtering

• ctx: context related edges are shown

• not_lex: all edges except lexical ones are shown

• dataflow: dataflow related edges are shown

• a list of the above: shows the union of the designated subgraphs

10

Using queries. Queries 6 can be invoked by either

ri:q(Query).

or

ri:q(Module, Regexp, Query).

The former is applicable when a query starts generally, such as

ri:q("mods.funs.name").

For those queries that begin from a selected position (these queries start
with ”@” when used from Emacs), the second variant is required. As the console
cannot mark a position, the first and the second component indicate the starting
point for the query. The following example shows how to get all the variables
used in the body of the function f/2 from the module m.

ri:q(m, "f\\\\(X, Y\\\\)", "@fun.var").

Additional options can be given to a semantic query in a proplist as the last
argument. The following arguments are currently recognized:

• {out,FileName} - write the textual output of a query to a file

• linenum - prepends match sites with file and line number information
similar to grep -n.

The following example outputs all defined functions with line numbers to a
file named result.txt.

ri:q("mods.funs",[linenum,{out,"result.txt"}]).

2.2 Module and function dependencies.

We say that a module A is dependent on another module B (A→ B) if there is
at least one function call from A to B. A cyclic dependency appears, when B is
also dependent directly (B → A) or indirectly (e.g. B → C → A) from A. Note
that it is possible to have a cyclic dependency among the modules while having
no cyclic dependencies among the functions. For example, a function call from
A:foo to B:foo, and from B:foo2 to A:foo2 implies a cyclic dependency on the
module level.

On the other hand, if one wants to have a deeper analysis and pays more
attention to the concerning functions, a function level query should be done. In
our previous example, no function level cycle appears, unless A:foo calls B:foo,
and B:foo calls A:foo.

The following examinations can be done considering dependencies:

• Checking whether there are cycles, if so, listing them out

11

• Printing out the cycles, meaning the modules/functions will not be rep-
resented by their proper graph node, but with their names (for instance,
instead of {’$gn’, module,3}, module test will be printed, if the graph
node stands for that exact module).

• Checking for cycle from one or more nodes as starting points

• Drawing the dependency graph

• Drawing the dependency graph from a starting node

• Drawing the cyclic part of the dependency graph if one exists (you can
also give a cyclic node as a starting node)

Dependency analysis can be done in two ways: directly with their proper
modules or by the means of ri interface. To call the desired query, the user
should give a proplist, stating the different requirements. The two interface
functions are:

• ri:draw_dep/1 - for drawing

• ri:print_dep/1 - for listing, printing out to the standard output

The options and the keys for the functions are:

• {level, Level}| Level = mod | func

Stating the level of the query, module or function level.

• {type, Type} Type = all | cycles

The investigation should be done on the whole graph/table, or just on the
cycle part (if it exists). When listing out the cycles, ”all” gives back the
result in their graph node form, while ”cycles” returns with their proper
names (see examples above).

• {gnode, Node | NodeList::lists(Node)},

Node = node() | Name,
Name = Module::atom() | Function::string()

Specify a node or nodes (given in a list) as a starting point for the analysis.
In module level, the name should be given as an atom, while in the case of
function it has to be a string (”Module:Function/Arity”). In both cases
the node/nodes can be given as graph nodes as well.

• {dot, Dot::string()}

The user can stipulate his own name and absolute path or the generated
.dot file. Unless it is a new absolute path, the .dot file will be placed into
the ./dep_files directory. Only available in the case of draw_dep, new
feature.

Examples:

12

ri:draw_dep([{level, mod}, {gnode, erlang}]).

ri:draw_dep([{level, mod}, {gnode, erlang},

{dot, "/home/working/dot/test.dot" }]).

ri:draw_dep([{level, func}, {gnode, "lists:hd/1"}]).

ri:draw_dep([{level, mod},{gnode, {’$gn’, module, 4}}]).

ri:draw_dep([{type, cycles}, {level, func},

{gnode, {’$gn’, func, 36}}]).

Functionblock examination. Function blocks are groups/clusters of mod-
ules mainly implementing some functionality inside an application. We also
seek dependencies between them, which is conceptually similar to dependencies
between modules: a function block FB1 is dependent on a function block FB2
if a module from FB1 is dependent on one from FB2.

A function block can be defined with its containing modules: given as a list,
or defining them with the containing directory, or defining them by a regular
expression.

The function ri:fb_relations/1 is used for the function block dependency
analysis. The argument, which is again a proplist of this function determines
the exact examination type.
The Options are the following:

• {command, Command}

Command = get_rel | is_rel | check_cycle

| draw | draw_cycle

– get_rel - Displays the relationship between the given function block
list. The result is a tuplelist where a tuple represents a relation.

– is_rel - Decides whether there is a connection between the two given
function blocks.

– check_cycle - Checks for cycles in the dependencies between the
given function block list. Unless list is given, checks among every
function block list.

– draw - Prints out the entire graph or creates a subgraph drawing
from the given function block list. Output file is fb_relations.dot.

– draw_cycle - Prints out a subgraph which contains the cycle(s). Un-
less cycles exist, prints out the entire graph. Output file is
fb_rel_cycles.dot.

• {fb_list, List}

List = [string()] |

[{Basename::string(), [Function block::atom()]}]

Chosen function block lists for further examinations. If no list given, then
it takes every function block list, which means that every absolute path
defines a function block.

13

• {other, Other}

Other = bool()

The Other parameter stands whether the category ”Other” would be taken
into consideration or not (true/false). The default value is true.

Examples:

ri:fb_relations([{command, check_cycle}]).

ri:fb_relations([{command, draw_cycle}]).

ri:fb_relations([{command, is_rel},

{fb_list,["path_to_dir/subdir",

"path_to_dir/subdir/subsubdir"]}]).

ri:fb_relations([{command, is_rel},

{fb_list,{"path_to_dir", [1, 2]}}]).

Optional Other category Let’s think about function blocks in the first
sense as mentioned in the beginning, so every directory with its absolute path
gives a different function block. The Other category is a special collector name
for those modules which cannot be divided into any function block. Practically
this covers those modules which do not have directories (for example, usually
erlang). This category can be taken into consideration as a false function block,
so a new option was introduced for eliminating this category. With this the
dependencies with Other category are skipped, the tool takes into consideration
only the real connections.

Function blocks can be filtered by the means of regular expressions using the
function ri:fb_regexp/1 and its parameters are the following:

• {type, Type}

Type = list | get_rel | cycle | draw

– list Prints out every function block which matches the basic regular
expression.

– get_rel Decides whether there is a connection between the two given
function blocks.

– cycle Checks for cycles in the dependencies between the given func-
tion block list.

– draw Prints out the entire graph or creates a subgraph drawing from
the given function block list. Output file is fb_relations.dot or can
be user defined with the dot key.

• {regexp, Value}

Value = File::string() | [RegExp::string()]

If this option (tuple) is not given, the program works with a basic regular
expression. The basic rule: <function block>/common/<service>/ebin
or <function block>/common/<service>/lib/ebin. and regular expression
saved for this:
^(/)[0-9a-zA-Z_./]+/common/[0-9a-zA-Z_.]+/(lib/)?(ebin)$.

14

– Value - If the regular expression is given in a file then every single reg-
exp has to be defined in a separate line and must follow the Perl syn-
tax and semantics as the ”http://www.erlang.org/doc/man/re.html”
erlang module resembles so. However, the user can give the regular
expressions in a list as well. If there is an error with a regular ex-
pression in the file or in the list, it prints out the regexp, the error
specification, and the position. The most usual regexp is ”.*” (the
Perl syntax does not allow simply ”*”, because this symbols means
possible unlimited repetition of characters declared before it, and
there are no characters declared before it)

Examples:

• ri:fb_regexp([{type, draw}, {dot, test.dot}]).

• ri:fb_regexp([{type, list}, {regexp, "regexp"}]).

• ri:fb_regexp([{type, list}, {regexp, "^/home/[a-z./]+}]).

User defined function blocks One can make his own function block in
the following three ways:

• Giving the exact modules (with their name) which should be in one func-
tion block.

• Regular expressions covering the structure of the directories.

• By regular expressions covering the structure of the directories and the
structure of the name of the files.

Example:

refusr_fb_regexp:re([{type, list}, {fb,

[[cycle1, cycle2],

"/home/user/[a-zA-z]*",

"/home/user/[a-zA-z./]*/.*_ui.erl"]}]).

2.3 Interface layers

Interface layers and additional relations can define and can check wether in this
architecture there are function calls, that insult the layer hierarchy or not.

Defining interface layers We can define the hierarchy of the interface layers
with a list. The first element of the list is at the bottom of the layer hierarchy
and the last element of the list is at the top of it. This means, that by default
every layer can call functions from its own layer and the layer immediately
below. The list contains tuples. Every tuple defines an interface layer: the first
element of the tuple is a label with the name of the label; the second element is
a list, that contains the modules, which from the layer is built. There are four
ways to specify this list with:

15

• Name of the modules: [{il1,[one1,one2]},{il2,[two1]}].

• Module nodes: [{il1,[{’gn’,module,2},{’gn’,module,4}]},
{il2,[{’gn’,module,6}]}].

• List of regexps: [{il1,["^(/home/user)/[a-zA-Z0-9_/]+(/layer1)$"]},
{il2,["(/layer2)$","^(/home/user/layer2/src)$"]}].

• File, that contain regexps: [{il1,["layer1"]}, {il2,["layer2"]}]. In
this example layer1 and layer2 are files, which contain regexps. When
working with files in the list have to be only one file name.

If regular expressions are used to define interface layers, we can mix the two ways
of specification: [{il1,["^(/home/user)/[a-zA-Z0-9_/]+(/layer1)$"]},
{il2,["layer2"]}].

Define additional relations Between two layers we can define a relation,
which allows function calls from the first to the second layer. The definition
of these additional relations available with a list, that contains this pairs in
tuples. We can refer to interface layers with their names. Suppose, that we
want to allow function calls from il1 to il2 as well as from il2 to il4 layer:
[{il1,il2},{il2,il4}].

Examples:

• ri:check_layered_arch([{il1,["^(/home/user/layers/layer1)$"]},

{il2,["^(/home/user/layers/layer2)$"]}, {il3,["regexp3"]}],[]).

• ri:show_layered_arch([{il1,["^(/home/user/layers/layer1)$"]},

{il2,["^(/home/user/layers/layer2)$"]}, {il3,["regexp3"]}],[]).

• ri:show_layered_arch([{il1,["^(/home/user/layers/layer1)$"]},

{il2,["^(/home/user/layers/layer2)$"]}, {il3,["regexp3"]}],

[{il1,il3}]).

2.4 Server management command list

Here’s the list of supported server management commands:

• add(FDML) - add a module, file, directory or a list of these to the database

• drop(FDML) - drop a module from the database

• ls() - list files that are in the database

• backup() - update the backup (checkpoint)

• undo() - undo the transformation (rollback, only one step)

• clean() - clean backups (delete all checkpoints)

16

• reset() - reset the database to an empty state, but valid schema

• graph(Target) - assume no options and call one of the next two

• graph(Atom,Options) - assume ”.dot” extension and call the one below

• graph(File,Options) - draw the graph with the given options

• svg() - draw the graph to graph.svg and call Graphviz

• svg(File)

• svg(File, Options)

The additional/modified commands, that the NIF version supports:

• backup() - creates a backup

• backup(CommitLog) - creates a backup as ri:backup/0, but here the user
can attach a commit log to the backup file

• ls_backups() - returns a lists of backups, that has been created before
with ri:backup/0 or ri:backup/1

• backup_info(Backup) - returns information about the given backup

• restore(Backup) - restores the given backup

• create_graph(Name) - creates a graph with the given name

• rename_graph(OldName, NewName) - renames a graph that has the given
OldName, with the given NewName

• ls_graphs() - returns a list of the created graphs

• actual_graph() - returns the actual graph’s name

• load_graph(Name) - loads the given graph

• delete_graph(Name) - removes the given graph

• delete_all_graphs() - removes all graphs

2.5 Running dynamic call analysis

Dynamic function calls are either dynamic MFA calls (those MFA calls whose
callee is given by means of non-literal expressions) or apply calls (calls to the
erlang:apply/3 built-in function). These constructs are rather difficult to be
statically analysed, since their callee is determined just at execution-time. In
many cases, we are able to find potential callees, however, this kind of analysis
would be inefficient to be performed incrementally. Therefore dynamic call
analysis has to be requested by the user.

In order to analyse dynamic call constructs, load all the libraries and files
you would like to work with. Then in the RefactorErl shell, type:

17

ri:anal_dyn().

The dynamic call analysis starts and informs you about the entire process
and its progress. Firstly, all function calls are gathered from the database.
Secondly, dynamic ones are filtered and passed to the next step, where a parallel
algorithm tries to identify the callee of each call. Finally, the results are merged
and stored into the database.

For instance, executed on Erlang stdlib 1.17.4 :

24012 function calls found in the database.

Looking for dynamic calls...

541 function calls seem to be dynamic.

Looking up dynamic calls... (533/ 541)

Identification of 8 dynamic calls timed out.

533 dynamic calls identified in the database.

Analysing dynamic calls... (533/ 533)

Analysis completed.

As you can see in this example, there may be function calls that are not
identifiable in a reasonable time (currently the timeout is set to 5 seconds,
and there were 8 calls whose analysis has been ignored). This is due to the
complexity of some data-flow path analysis. Users may increase the timeout
on their own risk in order to make the analysis process able to identify all the
callees.

Please note that most database modifications (e.g. loading or refactoring a
module) may invalidate the results of this dynamic call analysis. Currently this
invalidation step is not automatically done, so the user has to invoke it. To
clean the dynamic calls (and every the corresponding entry) from the database,
simply call:

ri:clean_dyn().

2.6 Transformation command list

Here’s the list of supported transformations:

• elimvar(In, Pos) - eliminate variable

• extfun (In, Range) - extract the selected expressions into a function

• expfun (In, Pos) - expand implicit funexpression to function call

• genfun (In, Range, NewVarName) - generalize function with a new ar-
gument

• inlfun (In, Pos) - inline function at application

18

• inlmac (In, Pos) - inline macro at use

• intrec (In, Range, NewRec, [RecFldName1, RecFldName2, ...])) -
introduce record instead of tuple

• merge (In, Range, NewVarName) - merge common subexpressions into
a new variable

• movfun (From, ToMod, [{FunName,Arity}|_]) - move function

• movrec (From, To, [RecName|_]) - move record

• movmac (From, To, [MacName|_]) - move macro

• reorder(In, {FunName,Arity}, [ArgIdx|_]) - reorder function argu-
ments

• renfld (In, RecName, RecFldName, NewRecFldName) - rename record
field

• renfun (In, {FunName,Arity}, NewFunName) - rename function

• renhrl (FromFile, ToFile) - rename header file

• renrec (In, RecName, NewRecName) - rename record

• renmac (In, MacName, NewMacName) - rename macro

• renmod (From, ToMod) - rename module

• renvar (In, Range, NewVarName) - rename variable

• tupfun (In, Range) - change function arguments into tuple

• upregex() - upgrade regexp from ”regexp” module to ”re” module usage

• genspec(File, {FuncName, Arity}) - generate function spec

In the above list, the parameters can have the following types:

• In, From, To: filename as string or module name as atom

• FromFile, ToFile, MacName: strings

• ToMod, RecName, RecFldName, FunName: atoms

• Arity, ArgIdx: integers

• Pos: integer, a character position in the file

• Range: a pair of positions

19

2.7 Scriptable RefactorErl interface

ris is similar to ri, with the following basic ideas:

• results are always returned via the function return value

• no mandantory standard output

• arguments very regular - semantic queries for almost everything

• you can also input a semantic query via atoms instead of strings to ease
escaping.

• operations are composable (i.e., continue one where another has left off)
- queries and refactorings can go back and forth

• you can perform a series of batch refactorings in a single step by selecting
multiple entities at once

Function returns

An encapsulated query results() type. ris:unpack/1 ris:desugar/1
If a query chain yields an empty list at some point, the remaining part will

also yield an empty list.
Exceptions are thrown to indicate abnormal operation (internal error, illegal

operations, connection errors, etc.) or denied transformation (unmet precondi-
tions). The exact format is {Severity, {Code::{ , , }, Message::string()}, where
Severity is ’abort’ for denied operations, and ’error’ for fatal errors.

Usage examples

2.7.0.1 Adding files

Added = ris:add_byname("mymods.erl").

ReAdded = ris:add(’mods[name~"mymodu.*"]’).

2.7.0.2 Dropping files

ris:drop(’mods[name ~ "mymo.*"]’).

2.7.0.3 Refactorings

RenamedVars = ris:rename("mods.fun.var[name=="Colour"]", "Color").

MovedFuns = ris:move("mods[name ~ "^referl_.*"].fun[exported==false]",

fun(F)->

ris:qstr([F,".mod.name"])++"_util"

end).

20

Moved = ris:move("mods[name==mod1].fun[name==fun1 and arity==3]",

mod2).

NewFun = ris:extract("mods[name==module1]

.fun[name==f and arity==0]

.expr[last==false]",

mynewfun).

NewVar = ris:intvar("mods[name==module1]

.fun[name==f and arity==0]

.expr[index==1].esub[class/=pattern]",

"Varname").

NewRec = ris:intrec("mods[name==module1]

.fun[name==f and arity==0]

.expr[index==1].esub[class/=pattern]",

{newrec,[field1,field2]}).

NewFun = ris:reorder("mod[name==mod1].fun[name==fun1,arity==3]",

[3,2,1]).

NewFun = ris:tupfun("mod[name==mod1].fun[name==fun1,arity==3]",

{1,2}).

ris:generalize("mod[name==china].fun[name==sum].var[name=="A"]").

ris:eliminate("mod[name==china].fun[name==sum].var[name=="A"]").

ris:inline("mod[name==china].fun[name==sum]

.expr[type/=pattern and index==1]").

21

Operators

The result of the queries can be combined with the following set operators:

• Intersection – The following example takes the intersection of the files
included by the two modules.

ris:q({"mods[name==mod1].includes", intersect,

"mods[name==mod2].includes"}).

• Union - similar to the above (use key ’union’)

• Substraction - similar to the above (use key ’minus’)

• Range – Ranges of expressions can be selected which denotes a list of con-
tinuous expressions between two syntactical siblings. An empty semantic
query denotes the beginning or end of a block when used as the initial or
final limit respectively. In this example, the expression range starts from
the (first) match expression that contains ”Var1” in the pattern side up
to the end of the syntactical block.

NewFun = ris:extract({"mods[name=mod1]

.fun[name==f and arity==0]

.expr[type==match_expr]

.esub[class==pattern and

type==variable and

.var[name=="Var1"]]",

range, ""}, mynewfun).

• Sequence – Queries can be sequenced to continue a query from where
another has left off. This example first adds the module from file ’my-
module.erl’. The add call returns the entities loaded. A semantic query
aggregate of a list works by executing the first query (or in this case, spec-
ifying a starting entity), and then running the next query in the chain (in
this case getting the name of files included by the add call).

ris:q([ris:add_byname("mymodule.erl"),".includes.name"]).

• another sequence example – The following example shows an example for
composition. It first renames all functions whose name is ’duck’ to ’quack’.
It then appends the suffix ’ quacker’ to the name of all functions which
call these quacks. The new name is automatically converted to an atom.

New = ris:rename(’mods.fun[name==duck]’,quack),

Callers = ris:q([New,".callers"]),

[ris:rename(Fun,atom_to_list(Name)++"_quacker") ||

Fun <- Callers,

Name <- ris:q([Fun,".name"])].

22

New = ris:rename(’mods.fun[name==duck]’,quack),

Callers = ris:q([New,".callers"]),

ris:rename(Callers,

fun(Fun)->

ris:qstr([Fun,".name"]) ++ "_quacker"

end).

2.7.0.4 Textual display Use ris:show/1 to stringify entities. ris:show/2
does the same while accepting additional options already known for ri:q/3. Use
the respective ris:print/1 and ris:print/2 functions for screen and file output.

ris:print(ris:q("mods.fun")).

The following gives the same result set, but written to the given file and anno-
tated with line numbers. (Note that you could also manually write the output
of ris:show/1 to a file.)

ris:print(ris:q("mods.fun"),

[{out,"funs.txt"}, linenum]).

3 Using RefactorErl in the command line

This section introduces the Command Line Interface (CLI) of RefactorErl.

We already described the Erlang shell interface of the tool, which proves to
be pretty useful in most of the cases. However, we realised that sometimes one
may need to access the tool from outside the Erlang shell. The RefactorErl
CLI provides a lightweight interface that can execute Erlang commands inside
RefactorErl. More precisely, it invokes Erlang functions that are specified by
command line arguments.

We note that the current version is a prototype, only discovering opportu-
nities and usefulness of this kind of interface. Notice that the CLI is applicable
directly by hand as well as indirectly by code editors. Latter makes RefactorErl
callable from editors that do not support Erlang shell.

Installation

If you have successfully downloaded and compiled RefactorErl, you have nothing
else to install, since the CLI is written as an EScript.

Before the first usage, you should redefine two functions defined in the Refac-
torErl CLI:

• referlpath() defines the directory path to the tool (“.” by default)

• referlnode() defines the node name of the tool (“refactorerl@localhost” by
default)

23

Also, you should make the ’RefactorErl’ EScript executable. You may use a
command like

chmod +x RefactorErl

Usage

Using the CLI is pretty straightforward. You can simply pass the following data
to the script as command line arguments:

• The name of the module the invoked function is located in

• The name of the invoked function

• The function arguments

For example,

/path/to/refactorerl/bin/RefactorErl mod fun arg1 arg2 "arg3"

will invoke mod:fun(arg1, arg2, arg3) inside RefactorErl.
Note that Erlang terms passed to the CLI should be enclosed by double

quote marks.

Handling the RefactorErl server First of all, if the RefactorErl server is
not running, you should start it up to be able to communicate with. Type

RefactorErl start

to start up. If the server is already running, you get a message of it.
Also, you can stop RefactorErl. If the server was not running, you will be

informed.

RefactorErl stop

Examples

Resetting database:

RefactorErl reset

RefactorErl ri reset

Adding files:

RefactorErl ri add "/path/to/module.erl"

Listing database contents:

RefactorErl ri ls

Renaming function mod:f/1 to g:

RefactorErl ri renfun mod "{f, 1}" g

24

4 Web interface

The web based interface has many benefits and implements additional function-
ality. The main features of the web interface are the ability to run semantic
queries- both of global queries and queries starting with @ are supported, the
query construct assistant, the query storage and the visualisation of the query
result, possibility to see running queries and abort them if necessary, database
operations, ability to mark files with error forms, dependency examinations.

JavaScript must be enabled in the browser to be able to use the interface!

4.1 Installation

To be able to use the web based interface we need to have an already working
Yaws webserver. Required version is 1.89. Help for the installation:
http://yaws.hyber.org/yaws.pdf (Chapter 2).

4.1.1 Start up

We can start the interface either with referl script with -nitrogen switch, or
from RefactorErl shell. In both cases we get a default configuration with server
name localhost, port 8001, and IP 127.0.0.1.

4.1.2 Starting up with referl script

Parameters to be configured:

• -yaws path YPATH: The absolute location of your Yaws ebin directory.

• -yaws listen YLISTEN: Valid IP address, which Yaws will listen to.

• -yaws name YNAME: Valid domain name, which Yaws will be bound to.

• -yaws port YPORT: Valid port number, which Yaws will be bound to.

• -browser root BROOT: The web based interface allows database opera-
tions. The root directory for those operations can be set, by giving the
path of root directory in this parameter.

• -images dir IDIR: Path of the directory where the generated images,
which are the visualisation of the results of dependency examinations,
will be written.

Usage of switches is optional, except the -nitrogen switch.

Example:

bin/referl -nitrogen

-yaws_path /Users/V/yaws-1.89/ebin

-yaws_listen 127.0.0.1

25

-yaws_port 8000

-yaws_name localhost

-browser_root /Users/V/erlang

-images_dir /Users/V/graph_images

4.1.3 Starting up from RefactorErl shell

We have 2 functions for starting the interface : ri:start nitrogen/0 and
ri:start nitrogen/1. If the 0 arity function is used, the interface starts up
with default configuration. If the 1 arity function is use the start up can be
configured using a prop-list. Available properties are the same as described in
the previous section. Usage of switches is optional.
Example:

ri:start_nitrogen([{yaws_path,"/Users/V/yaws-1.89/ebin"},

{yaws_listen,"127.0.0.1"}, {yaws_name, localhost},

{yaws_port,"8000"}, {browser_root,"/Users/V/erlang"},

{images_dir,"/Users/V/graph_images"}]).

4.2 Shutting down

It is important to log out, before shutting down the interface, because the log
out process will delete the dynamic generated images, which belong to the user.
If the interface have been started up from RefactorErl shell, then
ri:stop nitrogen(). can be called to shut down the interface.

4.2.1 Logging in

To log in one must open a browser (recommended: Mozilla Firefox) and enter
the URL defined by the configuration (the default is http://localhost:8001/)
after the web server had been started. Usage of services are allowed only to
authorized people. First, you have to log in with a username (passwords are
not supported yet). The browser will be redirected to queries page.

4.2.2 Semantic queries

This service is available under ”Queries” menu.

Constructing semantic queries The query construct assistant is located at
the top-left corner of the page. While typing into the text-box, the interface
offers possible continuations for the actual, uncompleted sub-term. The offered
option can be chosen from a drop-down list. This auto-complete mechanism
helps new RefactorErl users to use the language, and also all developers to
speed up query construction and to avoid constructing wrong queries.

Pressing the ”Run” button evaluates the query and displays the result (Fig-
ure 2).

26

Figure 2: Web interface

4.2.2.1 Position based queries A file browser was placed at the left side
of ’Queries’ page at ’File browser’ tab. One of the previously loaded files can
be selected from the file browser panel. By selecting a region or pointing at
a position in the text- box, where the contents of the file are loaded in, one
can specify the exact position as starting point. Also the result of the previous
query can still be reused as a starting point.

4.2.2.2 Alias-able queries We made queries alias-able, cause of named
queries can be identified easier, and are more readable for humans, too.

After a query has been successfully run first, it appears at the left side of
’Queries’ page at ’Previous Queries’ tab.

By clicking the corresponding ’E’ button, a text-field appears, which contains
the query string. By replacing the query string with the name, what is wanted
to assign to the query, and clicking the ’Save’ button the query will be named.
After a name has been assigned to the query, the name appears at ’Previous
Queries’ tab instead of the query string. If the name of the query should be
changed, the same mechanism should be done as described above.

The query string can be shown as an information element by clicking the ’?’
button.

Previous Queries For your convenience, the interface stores previously exe-
cuted queries and their results, which are listed at the left side of the page at
”Previous Queries” tab. One can choose to list only the queries which belong
to the current user, or all the queries stored in the system.

When one of the queries located in the list is clicked on, the interface first
examines if the database has changed since that given query was last run. If

27

there are no changes, the stored result is displayed. In the other case, the query
is re-executed, the stored result is updated, and the new result is displayed.

Users have possibility to delete their own queries from the list by clicking on
the corresponding ”X” icon, or to run queries which belong to other users by
clicking on the query string.

By clicking on the corresponding ”?” icon, the query string is always shown.
If query is one of the queries with @ the starting file and position are also shown.

By clicking on the corresponding ”E” icon, one can assign or can reassign a
name to the query. This mechanism helps users to identify queries much easier.

Running Queries The list of currently running queries is displayed at the
left side of the page at ”Running Queries” tab. The list is updated in every
second. A running query can be aborted by pressing the corresponding X icon.
The current user and the user, who started the query is notified about the abort.

Displaying the result of queries Results are displayed at the right side of
the page in a table. The source of the entries of the result’s can be visualised by
clicking on the given entry in the detail. If the source is loaded to the database,
it will be shown in a text-box located to the right of the table. The part of the
source code responsible for the entry will be highlighted in the text-box.

4.2.2.3 Skeleton of queries Large amount of queries are similar to each-
other. The difference usually originates from the actual value of their filter
parameter or from the used sub-query. Examples are shown below.

mods[name = a].funs[(name = f) and (arity = 2)].refs

mods[name = b].funs[(name = g) and (arity = 3)].refs

or

mods.funs[arity = 2]

mods.funs[exported and is_tail_rec]

A new abstract level is introduced, where those queries are not only similar
to each-other, but those queries do equal to each-other, we called it Skeleton.
Examples are shown below.

mods[name = $ModName$].funs[name = $FunName$ and

arity = $Arity$].refs

mods.funs[$FunSubQuery$]

Usage of the skeleton The service of the skeletons is available under
’Queries’ menu. A skeleton can be constructed by typing its body, which ob-
serves the rules of the valid skeleton, into the query construct assistant, than
’Save as skeleton’ button should be pressed. By pressing the ’Save as skele-
ton’ button, a dialogue box appears, where the wanted name of the constructed
skeleton should be typed. By clicking the ’Save’ button, which is placed in the

28

dialogue box, the skeleton will be saved. The constructed skeleton appears in
the list of available skeletons, which is located at the ’Skeletons’ tab, whether
the save was success. If any error occurs during the save, an error message will
be shown.

A previously saved skeleton can be evaluated by calling as a function with
the actual values of the parameters. A valid actual parameter can contain nearly
anything, only the ’ character is needed to avoid, because the ’ character is
the delimiter of the value of an actual parameter. Auto-complete does not only
offer the possible endings, but also does offer the joint skeletons.

A valid skeleton call is shown below:

Name = skeleton_name

Body = mods.funs[$FunSubQuery$]

skeleton_name(’ (arity>0) and (name like s) ’).

Previously saved skeletons are listed at ’Skeletons’ tab.
By clicking the name of the skeleton, a valid ’skeleton call’ will be placed in

the query construct assistant, where the actual parameters should be written
by replacing character with the corresponding parameter value.

By clicking the ? icon, the body of the skeleton and the owner of the skeleton
will be shown.

After a successful evaluation of a skeleton, the generated semantic query
string and its result are saved in the ’Previous queries’ list, and the result of the
semantic query will be shown in the right side of the page.

Only the owner of the skeleton can edit its body, or can delete it.
By clicking the corresponding ’E’ icon, the body of the skeleton will be placed

into the query construct assistant. After the necessary changes had been made
then the ’Update skeleton’ button has been pressed, the body of the skeleton
will be updated.

By clicking the corresponding ’X’ icon, the skeleton will be deleted.

4.2.3 Database operations and environmental nodes

This service is available under ”Files” menu. The service works correctly only,
if the process has the appropriate right for files and directories. The file browser
panel is located at the left side of the page. Files which are located on server,
or which had been loaded into the database can be browsed.

Browsing files on the server This mode can be reached by selecting ”Browse
server” from the drop-down located at the top of the browser. The root directory
of the browser is an optional configuration parameter. Possible values are:

• If the browser root parameter is set during start up, the given value is
the root directory.

29

• If the browser root parameter is not set during start up, but the database
had contained files before start up, the root elements are the directories
of these files.

• If the browser root parameter is not set during start up, and the database
had not contained files before start up, then RefactorErl’s lib directory will
be the root directory.

In this mode, directories can be listed, the contents of files can be shown, and
a selected directory or file can be added to database. The selected directory or
file is shown by a blue background. Status messages are displayed during the
addition of the file to database, and also after the progress has finished.

Browsing loaded files This mode can be reach by selecting ”Browse loaded
files” from the drop-down located at the top of the browser. In this mode,
directories can be listed, contents files can be shown, a selected file or directory
can be reloaded to the database, and a selected file can be dropped from the
database. Status messages are displayed during the reloading/dropping process
of the file to/from the database, and also after the progress has finished.

Dropping a file means only that is drop from the database, so the file is not
deleted from file system.

Environmental nodes ’Appbase’ environmental nodes can be listed, deleted
or set also under Files menu.

Adding/deleting files After selecting a certain file from the browser tab,
you can perform database operations, such as adding or dropping it from the
database. The progress of the performed operation is shown on a progress bar.

4.2.4 Errors

This service is available under ”Errors” menu.
If database contains file(s) with error form(s), the list of errors will be dis-

played in a table. A row in the table is equivalent to one error. File name
and error message are shown in the table. The place of the error in the source
code can be visualised by clicking on the file name. The file is loaded into the
text-box, and the place of the error will be highlighted.

If the database does not contain any files with error forms, ”No error” mes-
sage is displayed in the page.

4.2.5 Dependency examinations

This service is available under ”Dependency graph” menu. Dependency exami-
nations can be performed on module or function level on the whole graph or the
cyclic sub-graph. A self-defined module or function can be set as the starting
node of the examination by the user.

Possible configurations of the examination are:

30

• configuring the level of the examination: can be set to module or function
by selecting the required option from the ”Level” drop-down.

• configuring the type of the examination:

– None: In this case, the type of examination is not given, this mode is
used when the user wants to set the starting node of the examination.

– Whole graph: Dependency examinations are performed on the whole
graph.

– Cyclic sub-graph: Dependency examinations are performed only
on the set of cyclic sub-graphs.

• configuring the starting node of the examination:

– module: the user has to start typing the name of the module in the
text-field located under the ”Starting node (module)” label. While
typing into the text-field, the interface offers possible endings for the
string, based on the names of the modules which are loaded to the
database. The offered endings can be chosen from a drop-down list.

– function: the user has to start typing the name of the function in the
text-field located under ”Starting node (function)” label. The name
of the function should be given in the following form:
module name:function name/arity. The interface offers possible
endings, as described in the upper section.

After the examination has been configured, the ”Generate graph” button can
be pressed to start it. The result is available in two different graphic formats.
By clicking ”Generated graph in .dot” link the result is sent to the browser in
.dot format. By clicking ”See generated graph in .svg” the result is displayed
in a new window in the browser.
An application, called Graphviz, is needed to generate the result in svg format.

All images generated during examination, are placed in the directory, which
has been set during start up by images dir switch. If images dir parameter
has not been set, all images are placed in current working the directory.

Hence dependency analyse can be done not only in function or in module
level, but also in functionblock level. This service is available under Dependency
graphs menu at ’Functionblock’ tab (Figure ??). Predefined functionblocks are
the loaded directories, but a functionblock can be defined by user, too, by typ-
ing the needed Perl-like regular expression into the textfield, than by pressing
the ’Add’ button. The available functionblocks are placed in the ’Function-
block’ labelled textbox, where from the subjects of the analyse can be dragged
than can be dropped into the ’Subjects’ labelled textbox. After the ’Subjects’
list has been configured, the ’Generate dependency graph’ button should be
pressed. The result of the current analysis can be seen in svg format, or can be
downloaded in dot format from the result panel.

31

4.2.6 Logging out

If the interface is no longer needed, the user can log out by clicking the ”Log
out username” menu. During the logout process the interface clears the users
session, generated files which originate from users examinations, and redirects
the browser to the login page. The interface deletes neither the queries executed
by the user, nor their results, and keeps the state of the database, too.

5 Old web interface for semantic queries

This interface is deprecated, so use the new interface instead of it. The new
interface is described at Chapter 4.
We have a possibility to start the tool, load some code into the RefactorErl
database, afterwards start a yaws webserver instance by using the ri console
interface or referl script with special options. This webserver then provides a
web interface for running semantic queries on the database. A screenshot from
the interface is shown in Figure: 3.

Figure 3: Web interface for semantic queries

5.1 Installation

Yaws does not come with the standard Erlang/OTP, so first of all, you have to
download (from http://yaws.hyber.org/download) and install it. Recommended
version: 1.88 or higher.

Help for the installation: http://yaws.hyber.org/yaws.pdf (Chapter 2).

32

5.2 Starting and stopping the web server

Within the RefactorErl, yaws runs in an embedded mode.
You can start the web server either with referl script -yaws option, or from

RefactorErl shell by calling ri:start_yaws/0/1. In both cases we get a default
configuration with server name refactorErl, port 8001 and IP 0.0.0.0. We
can modify server name, port and IP, and we can define the location of our yaws
ebin directory.

Configuration with referl script If we simply start referl with -yaws

option, yaws will be searched in our erlang/lib library and will be started
with the default configuration.

Options:

• Add your yaws path to the code path: -yaws_path PATH

• Change default server name: -yaws_name NAME

• Change default port: -yaws_port PORT

• Change default IP: -yaws_listen IP

Example:

referl -yaws -yaws_name "localhost" -yaws_port 8000

-yaws_path "/home/somebody/yaws-1.88/ebin"

-yaws_listen 127.0.0.1

Configuration with RefactorErl shell If we call ri:start_yaws() it will
search yaws in our erlang/lib library and will start with the default configu-
ration.

By calling ri:start_yaws/1 we have the same options as with the script
options. We can pass a proplist as parameter with yaws_path, yaws_name,
yaws_port and yaws_listen keys (of course, any of the property can be miss-
ing).

Example:

ri:start_yaws([{yaws_path,"/home/somebody/yaws-1.88/ebin"},

{yaws_port,8000},

{yaws_listen,{127,0,0,1}},

{yaws_name,"localhost"}

]).

5.3 Usage

After the web server has been started, open a browser (recommended: Mozilla
Firefox) and enter the URL defined by the configuration (the default is http://
localhost:8001/).

First, you have to login with a username (passwords are not yet supported).

33

Executing queries Type your query in the input text field and press the Run
button. The query is added to the list of previous queries, the result of the
query appears in the "Result" section. Underlined entries are clickable: after
a click the Erlang file belonging to the entry appears, and the entry’s code part
highlights.

Only queries with modules or files initial selectors are allowed currently.

Selecting a previous query By using a drop-down list you can decide to
see either all the previously executed queries or only queries executed in your
user profile.

After selecting a previous query in the history its result appears the same
way as seen in the case of running new queries. If the database has not been
changed since the last execution of the query, its previously stored result ap-
pears, otherwise the query is re-executed and then displayed.

Deleting a previous query When we choose to browse our own queries
(not all of the queries), we can simply delete a previous query by clicking X sign
before the choosen query.

34

6 Querying semantic and syntactic information

6.1 Metric queries

A metric query language was designed to query some metric information about
Erlang programs.

From the Metric query menu you can run your own metric queries. Selecting
the Run metric query from the menu or using the C-c C-r m q shortcut you can
type your own metric queries in the minibuffer and run it.

6.1.1 Defined metrics

module sum - The domain of the query is a module. The sum of the chosen
complexity structure metrics measured on the modules functions. The
proper metrics adjusted in a list can be implemented in the desired number
and order.

line of code - The domain of the query is a module or a function. The number
of the lines of part of the text, function, or module. The number of empty
lines is not included in the sum. As the number of lines can be measured
on more functions, or modules and the system is capable of returning the
sum of these, the number of lines of the whole loaded program text can
be enquired.

char of code - The domain of the query is a module or a function. The number
of characters in a program script. This metric is capable of measuring
both the codes of functions and modules and with the help of aggregating
functions we can enquire the total and average number of characters in a
cluster, or in the whole source text.

number of fun - The domain of the query is a module. This metric gives the
number of functions implemented in the concrete module, but it does not
contain the number of non-defined functions in the module.

number of macros - The domain of the query is a module. This metric gives
the number of defined macros in the concrete module, or modules. It is
also possible to enquire the number of implemented macros in a module.

number of records - The domain of the query is a module. This metric gives
the number of defined records in a module. It is also possible to enquire
the number of implemented records in a module.

included files - The domain of the query is a module. This metric gives the
number of visible header files in a module.

imported modules - The domain of the query is a module. This metric gives
the number of imported modules used in a concrete module. The metric
does not contain the number of qualified calls (calls that have the following
form: module:function).

35

number of funpath - The domain of the query is a module. The total number
of function paths in a module. The metric, besides the number of internal
function links, also contains the number of external paths, or the number
of paths that lead outward from the module. It is very similar to the
metric called cohesion.

function calls in - The domain of the query is a module. Gives the number
of function calls into a module from other modules. It can not be imple-
mented to measure a concrete function. For that we use the calls_for/1

function.

function calls out - The domain of the query is a module. Gives the number
of every function call from a module towards other modules. It can not
be implemented to measure a concrete function. For that we use the
calls_from/1 function.

cohesion - The domain of the query is a module. The number of call-paths of
functions that call each other. By callpath we mean that an f1 function
calls f2 (e.g. f1()->f2().). If f2 also calls f1, then the two calls still
count as one callpath.

function sum - The domain of the query is a module or a function. The
sum calculated from the functions complexity metrics that characterizes
the complexity of the function. It can be calculated using various metrics
together. We can define metrics that are necessary to calculate the metrics
constituting the sum (with enumeration in the referl_metrics module).

max depth of calling - The domain of the query is a module or a function.
The length of function call-paths, namely the path with the maximum
depth. It gives the depth of non-recursive calls. Recursive calls are pro-
vided by depth_of_recursion/1 function. The depth of calling in the
following example is 3.

...

f([A|B], Acc) ->

Acc0 = exec(A, Acc),

f(B, Acc0);

f([], Acc0)->

Acc0.

exec(A, Acc)->

io:format("~w",[A]),

A + Acc.

...

max depth of cases - The domain of the query is a module or a function.
Gives the maximum of case control structures embedded in case of a con-
crete function (how deeply are the case control structures embedded). In

36

case of a module it measures the same regarding all the functions in the
module. Measuring does not break in case of case expressions, namely
when the case is not embedded into a case structure. However, the fol-
lowing embedding does not increase the sum.

...

A = case B of

1 -> 2;

2 -> ok

end

...

min depth of cases - The domain of the query is a module or a function.
Gives the minimum of case control structures embedded in case of a given
function. In case of a module it measures the same regarding all of the
functions in the module.

...

case Data of

{Pid, D} -> Pid ! D;

_ -> case Data of

...

end

end

...

max depth of structs - The domain of the query is a module or a function.
Gives the maximum of structures embedded in function. (how deeply are
the block, case, fun, if, receive, try control structures embedded) In case of
a module it measures the same regarding all the functions in the module.

number of funclauses - The domain of the query is a module or a function.
Gives the number of a functions clauses. Counts all distinct branches, but
does not add the functions having the same name, but different arity, to
the sum. The number of funclauses in the following example is 2.

...

f(Fun, [H|Tail])->

Fun(H),

f(Tail);

f(_, [])->

ok.

37

f(A, B)->

A + B.

...

branches of recursion - The domain of the query is a module or a function.
Gives the number of a certain function’s branches, how many times a
function calls itself, and not the number of clauses it has besides definition.
The branches of recursion in the following example is 2.

quicksort([H|T]) ->

{Smaller_Ones,Larger_Ones} = split(H,T,{[],[]}),

lists:append(quicksort(Smaller_Ones),

[H | quicksort(Larger_Ones)]

);

quicksort([]) -> [].

split(Pivot, [H|T], {Acc_S, Acc_L}) ->

if Pivot > H -> New_Acc = { [H|Acc_S] , Acc_L };

true -> New_Acc = { Acc_S , [H|Acc_L] }

end,

split(Pivot,T,New_Acc);

split(_,[],Acc) -> Acc.

calls for function - The domain of the query is a function. This metric gives
the number of calls for a concrete function. It is not equivalent with the
number of other functions calling the function, because all of these other
functions can refer to the measured one more than once.

calls from function - The domain of the query is a function. This metric
gives the number of calls from a certain function, namely how many times
does a function refer to another one (the result includes recursive calls as
well).

number of funexpr - The domain of the query is a module or a function.
Gives the number of function expressions in a module. It does not measure
the call of function expressions, only their initiation. In the next example
the number of the funexpr is 1.

...

F = fun(A) -> A + 1 end,

F(1),

F2 = fun a/1,

...

38

number of messpass - The domain of the query is a module or a function. In
case of functions it measures the number of code snippets implementing
messages from a function, while in case of modules it measures the total
number of messages in all of the modules functions.

fun return points - The domain of the query is a module or a function. The
metric gives the number of the functions possible return points (or the
functions of the given module).

average size - The domain of the query is a module or a function. The average
value of the given complexity metrics (e.g. Average branches of recursion
calculated from the functions of the given module).

max length of line - The domain of the query is a module or a function. It
gives the length of the longest line of the given module or function.

average length of line - The domain of the query is a module or a function.
It gives the average length of the lines within the given module or function.

no space after comma - The domain of the query is a module or a function.
It gives the number of cases when there are not any whitespaces after a
comma or a semicolon in the given module’s or function’s text.

is tail recursive - The domain of the query is a function. It returns with 1,
if the given function is tail recursive; with 0, if it is recursive, but not
tail recursive; and -1 if it is not a recursive function (direct and indirect
recursions are also examined). If we use this metric from the semanctic
query language (see section 6.4), the result is converted to tail_rec,
non_tail_rec or non_rec atom.

6.1.2 Aggregations, filters on query results

We can extend our queries with filters. A filter can be formatting and aggre-
gating function or the definition of the structure of the result.

The possible aggregation filters are listed below:

max - maximum on the result list

tolist - default return value of the query

totext - string format of the result

fmaxname - maximum with the name of the node

avg - average on the result list

min - minimum of the result list

sum - sum of the result list

39

6.1.3 Examples

Simple query With the following query we count the number of functions of
the modules given in the list.

show number_of_fun for module (’a’,’b’)

where

• A number of fun Number of fun a function giving the number of functions,

• A module Module the type of node in the query,

• A (′a′,′ b′) contains the names of modules in which we calculate the metrics.
In case the type of the node was defined as function the list must contain
the following elements: The name of the module, in which the function
was defined, the name of the function and its arity. In this case the list
can have more than one element. The next list {’test’,’f’,1} defines a
function which is defined in the test module. Its name is f, and its arity
is 1.

Advanced query In the next example we would like to define the number of
recursive calls of two functions defined in the a module, the number of branches
on which the particular function calls itself, and we sum up the two results with
the help of the sum aggregating function.

show branches_of_recursion for

function ({’a’,’f’,1},{’a’,’g’,0}) sum

At the end of queries we can place filters which filter the results that are received
at the output, or which are aggregating functions which change the result of the
query.

6.2 Metric analyser mode

The metric analyser mode has to be manually enabled by selecting
Start metrics from the Server item in the RefactorErl menu in the Emacs
interface of RefactorErl. Clicking Start metrics from the same menu turns
the mode off. When Metrics mode is on, the status indicator displays
Erlang Refact Metrics or a similar message. When metrics mode is turned
on, RefactorErl initializes the internal metrics representation by creating the
necessary tables, and loading them with the available module and function
nodes. It also calculates the initial values of the metrics.

The metrics mode of RefactorErl can also be enabled by invoking
ri:metricmode(on) from the command line. The mode can be turned off by
calling

40

ri:metricmode(off), and its current status can be queried by
ri:metricmode(show).

The limits of the metrics can currently be configured by editing the file
metricmod.defs. Figure 4 shows an example of the current format of the file.
The file contains two Erlang terms, one for the module level metrics and another
for the function level metrics. The metrics analyser system has built-in defaults;
any options given here override the defaults. For a given metric, the lower and
upper limits can be given, e.g. the limits on the lines of code in the module
are overridden in this file so that they are considered correct only if they are
between 100 and 1000.

{module_metrics,

[{line_of_code,{100,1000}},

{char_of_code,{100,60000}},

{number_of_fun,{0,10}},

...]}.

{function_metrics,

[{line_of_code,{0,20}},

{char_of_code,{0,600}},

{function_sum,{0,infty}},

...]}.

Figure 4: Contents of metricmod.defs

When in metric analyser mode, the Emacs interface of RefactorErl displays
the values of changed metrics after a transformation is invoked. The analyser
opens up the Metrics Result buffer, and shows the expected and the current
values of the measured metrics for all modules that have at least one metric
that is out of bounds as shown in Figure 5.

Values of metrics outside the user defined limits (”bad code smells”) can
also be queried manually using Show bad smells in the Semantic query menu.
Figure 6 shows the output of this query, which is quite similar to Figure 5; the
main difference is that Figure 6 shows all bad metric values, while the other
displays only those that are affected by the transformation.

The RefactorErl console also supports querying bad smells in the code. After
calling ri:metricmode(on), the user can call ri:metricmode(show), which
returns a term that describes the modules and functions where the metrics have
values outside the user defined limits. Figure 7 shows an example output of
this call; for example, the module a has 5 lines of code, which does not fit the
arbitrary range 10..20.. The mode can be turned off by calling
ri:metricmode(off)

41

Figure 5: Bad metric values after a transformation

42

Figure 6: Bad metric values in all loaded code

[{module, a,

[{line_of_code, 5, {10, 20}},

{char_of_code, 100000, {100,60000}},

{number_of_fun, 42, {0,10}},

...]},

{function, f, 1,

[{line_of_code, 21, {0,20}},

{char_of_code, 601, {0,600}},

...]}].

Figure 7: Console bad smell output

43

6.3 Semantic queries

A semantic query language was designed to query semantic information about
Erlang programs.

When you are using Emacs or other GUI-s of RefactorErl use the “Semantic
query” menu you can run your own semantic queries by selecting the “Run
query” (or using the C-c C-r s q shortcut in Emacs) and typing your own
semantic queries. It is possible to run queries in ri using functions ri:q/n.
The web interface of the tool not only provide the opportunity to run queries
but helps you constructing them.

6.3.1 Language elements

Entities Entities correspond to the semantic units of Erlang. The result of a
query written in the language is a set of entities. Each element of a set belongs
to the same type. We have the following entity types defined: file, function,

variable, macro, record, record field and expression. Each entity type
has a set of selectors and properties defined for them. You can query information
about specific entities with the help of these.

Selectors Selectors are binary relations between entities. The entities belong
to one of the seven entity types. A selector selects a set of entities that meet
given requirements for each entity. For example you can select the functions
defined in a given file. In that case the selection is a relation between files and
functions.

Properties Another way to get information about entities is to query one
of their properties. For example you can query about a function whether it is
exported or not. The main use for properties is that filters can be built with
their help.

Filters A filter is a boolean expression built mainly using properties. Using
a filter means selecting the subset of entities the filter holds true for. For ex-
ample you may be interested in all the exported functions of a given file, or the
functions with 0 arity, or maybe a combination of these: the exported functions
with 0 arity. In the example exported and arity are both properties of functions
and by using them it is possible to build a filter to select the required subset of
functions.

Semantic queries A semantic query written in the language consists of an
initial selection and a sequence of queries. The initial selection and the queries
are each separated by a full stop. A query can be selection, iteration, closure or
property query. Queries operate on entities.

semantic_query ::= initial_selector (’[’ filter ’]’)* (’.’ query)*

[’.’property] |

44

initial_selector (’[’ filter ’]’)* (’.’ query)*

[’.’property ’:’ statistics]

query ::= selector (’[’ filter ’]’)* |

iteration (’[’ filter ’]’)* |

closure (’[’ filter ’]’)*

iteration ::= ’{’ query (’.’ query)* ’}’ int

closure ::= ’(’ query (’.’ query)* ’)’ (int | ’+’)

filter ::= exp100

exp100 ::= exp200 [’or’ exp100]

exp200 ::= exp300 [’and’ exp200]

exp300 ::= exp400 [comparator exp400]

exp400 ::= [’not’] exp_max

exp_max ::= ’(’ exp100 ’)’ | (’.’ query)+ |

atom | int | string

Initial selectors Initial selectors get the current file and position as their pa-
rameters and return a set of entities as result. The entities of the result belong
to the same type, but the type can not always be determined in advance, it
depends on the parameters. Almost all of them begin with the character @ to
indicate that they depend on a position.

Examples:

• @variable looks for a variable at the given position. If no variable can be
found the result will be empty.

• modules gives the entities representing the modules loaded into the se-
mantic program graph of RefactorErl.

• @definition gives the entity that fits the best at the given position.

Selectors A selector is a binary relation between two sets of entities. The
elements of a set belong to the same entity type.
selector ⊆ entitytype1 × entitytype2
entitytypei ∈ {file, function, variable,macro, record, recordfield, expression}

Examples:

• The file entity has a selector named records which has the return type
record.
records ⊆ file× record
You can query the records of a given file by writing the "@file.records"

query.

45

Iteration Iteration in the language means the repeated application of a query
sequence. The queries are relations and a sequence of queries is a composition
of these queries. Using iteration is possible if the domain and codomain of the
query sequence is the same. The application is repeated exactly int times.

The result shown in this case is not only the result of the iteration but the
partial results also, in the form of chains. This way it is possible to gain addi-
tional information about programs.

Examples:

• The result of the semantic query "@function.{calls}3" is the same set
of entities as of "@function.calls.calls.calls". The result shown in
the first case will give more information: it gives the call chains with the
maximum length of 3 starting from a given function.

Transitive closure Transitive closure in the language means the closure of a
query sequence. The query sequence here is the same as in iteration, a binary
relation with the same domain and codomain. Using the denotation R for this
relation the meaning of the transitive closure:
R0 = R
Ri = Ri−1 ∪ {(r1, r3)|∃r2: (r1, r2) ∈ Ri−1 ∧ (r2, r3) ∈ Ri−1}
R+ =

⋃
i∈N Ri.

The result shown after a transitive closure is the same as the result shown after
iteration.

Examples:

• The result of the semantic query "@function.(calls)3" is the same set
of entities as of "@function.calls ∪ @function.calls.calls

∪ @function.calls.calls.calls". The results shown in the first case
are the call chains with the maximum length of 3 starting from a given
function.

• The result shown after the semantic query "@function.(calls)+" is the
list of all possible call chains starting from a given function.

Property query and statistics Properties are functions that give the value
of the property for an entity.
property: entitytype→ valuetype
valuetype ∈ {atom, string, int, bool}

The main purpose of properties is to filter sets of entities using them, but
their values can be queried too. To query the value of a property you have to
use the name of the property at the end of a semantic query.

Example:

• To query the value of the property exported for the functions of the given
file: "@file.functions.exported"

46

For properties with numeric values statistics are also available. Using these for
the results of metric queries can give more information than a simple list of
values.

Example:

• To query the average length of the functions of the given file:
"@file.functions.line of code.average"

Filters A filter is a boolean expression to select subsets of entities. After ap-
plying a filter, the result contains the elements of the original set where this
boolean expression is true. Building filters is possible using atoms, strings, in-
tegers, properties and embedded queries.
The use of strings and integers is unambiguous, but the names of properties are
atoms, so it is checked for each atom if they are properties or not.
Embedded queries can be used to query information about entities that is oth-
erwise unavailable, that is it can not be expressed by the help of properties. For
example we may need the functions with variables named File. This information
can not be expressed with the help of properties. Without embedded queries
it is only possible to query the variables named File and query the functions
containing these variables after that, with the following query:
"@file.functions.variables[name=="File"].function definition"

Embedded queries make it possible to use these kind of queries effectively, with-
out the need to continue with the query directly. The continuation of the query
is in the filter, used like a property with a boolean value. The value is considered
true if the result of the query is not empty. For the previous example using the
query
"@file.functions[.variables[name=="File"]]" will give the desired results.

Atoms, strings, integers and properties can be used in comparisons. The
language uses /=, ==, >=, =<, < and >. The results of comparisons are the
same as in Erlang.

The resulting expressions can be combined by and, or, and not operators,
and parentheses can be used, too. The operator precedence for the filters is as
follows:

Operator precedence (decreasing)
not unary
/=, ==, >=, =<, <, >, =:=, =/= left associative
and left associative
or left associative

6.3.2 Entity details

This section provides a reference guide to the elements of the query language.
Every entity type is explained together with its selectors and properties.

47

File entity A file entity corresponds to an Erlang source file. This entity
represents the module concept of Erlang, as modules are mapped to files, but
header files also fall into this category.

Initial selectors. File entities can be referred at the start of a query by two
selectors: files yields every file loaded into the refactoring database, and @file

yields the current file.

Selectors. The following selectors can be used on file entities. Note that every
selector can be used on either module or header files, but some of them will give
no results for headers (e.g. a header file can’t export functions).

funs (function): returns the set of function entities defined in the file.

records (record): returns every record entity defined in the file.

macros (macro): returns the macro entities introduced in the file.

includes (file): returns all the file entities included in the file, either directly
with a -include directive, or indirectly through an include chain.

included by (file): using this selector on a particular file entity gives all the
file entities that include the previous file.

imports (function): returns the set of function entities that are referred with
an import directive in the file.

exports (function): returns the set of functions exported in the file.

Properties. These properties are defined for file entities:

module (boolean): gives true if the file is a module.

header (boolean): returns true if the file is a header (.hrl).

name (atom): gives the name of the file. In case of modules it does not contain
the .erl extension to make it easier to work with module names.

dir (string): returns the directory containing the file.

path (string): returns the absolute path of the file (the directory and the com-
plete file name).

Function entity Function entities correspond to Erlang functions. Function
entities come from two sources: they are either defined in a source file that
is loaded into the database, or they are referred in the loaded code, but their
definition is not known. In the latter case, some information about the function
is not available.

48

Initial selector. At the start of a query, the @fun selector can be used to refer
to the current function (either the function called by the selected expression, or
the function being defined at the current selection).

Selectors. The following selectors can be used on function entities:

refs (expression): returns every expression that refers to the function. These
references can be function applications, import/export directives and im-
plicit function expressions.

calls (function): returns the set of function entities called in the body of the
function.

called by (function): returns every function that refers to the specific function,
either by application or implicit call.

args (expression): gives the function arguments as a list of expression entities.

body (expression): returns the top-level expressions of each clause body.

exprs (expression): returns the top-level argument, guard, and body expres-
sions of each clause.

vars (expression): returns the set of variable entities defined (binded) in the
bodies of the function.

file (file): returns the file entity that the given function is defined in.

Properties. The following properties are defined on function entities:

name (string): gives the name of the function.

exported (bool): returns true if the function is exported.

arity (int): gives the arity (number of arguments).

bif (bool): returns true if the function is an auto-imported built-in function.

pure (bool): returns true if the function is free of side-effects.

defined (bool): returns true if the definition of the function is loaded into the
refactoring software.

module (atom): returns the name of the containing module.

Variable entity Variable entities hold all the information about variables,
such as binding expressions, scopes etc.

Initial selector. To start a query with a variable entity, use the @var selector
to refer to the selected variable.

49

Selectors. The following selectors can be used on variable entities:

refs (expression): returns the set of expression entities that refer to the vari-
able.

bindings (expression): returns the top-level expression that binds the expres-
sion. It is always a pattern expression, e.g. an argument of the function,
of a pattern in a case construct. If the binding expression is ambiguous,
every possible binding expression is returned.

fundef (function): gives the function entity which contains the binding (defi-
nition) of the variable.

Properties. There is only one property for a variable:

name (string): returns the name (identifier) of the variable.

Expression entity Expressions are the basic syntactic elements of Erlang,
and they are represented by expression entities. This is the only syntactic entity
in the query language, it is mainly useful to express relations that cannot be
calculated by selectors of other entities. Patterns and guards are also represented
as expressions, however, there are syntactic units which are not expressions and
cannot be handled in this query language, like clauses and module attributes.

Initial selector. A query can be started from the currently selected expression
using the @expr selector.

Selectors. The following selectors work on expression entities. Note that an
expression is always treated as a single unit with its subexpressions, even in case
expressions with more clauses like if or case.

fundef (function): returns the function entity which contains the expression.

funs (function): returns every function entity referred directly in the expres-
sion.

vars (variable): returns every variable entity referred in the expression.

records (record): returns every record entity referred in the expression.

macros (macro): returns every macro entity referred in the expression.

sub (expression): returns the set of expressions that are nested in the expression
in any depth. This is mainly useful together with the type property.

top (expression): returns the expression’s top-level expression.

file (file): returns the file entity where the expression is located.

50

origin (expression): this is an experimental selector, which returns the origin
of the expression’s value determined by data flow analysis.

reach (expression): this is an experimental selector, which returns the places
where the expression’s value is copied, determined by data flow analysis.

Properties. These properties are defined for expression entities. Note that
some of them depends of the context of the expression, which makes possible
selecting tail calls or indexing function arguments.

type (atom): returns the type of the expression. The type can be one of the
following:

• application: func(Arg1, ...)

• implicit fun: fun func/1

• parenthesis: (Expr)

• tuple: {A, B, C}
• binary: <<3.14/float>>

• binary_field: 3.14/float in the previous binary

• record_access: Rec#name.fld

• record_expr: #name{fld=Val}
• record_update: Rec#name{fld=Val}
• record_index: #name.fld

• match_expr: Pattern = Expr

• send_expr: Pid ! Expr

• ’bnot’: bnot Expr (there are other prefix operators like this)

• ’+’: A + B (there are other infix operators like this)

• cons:

[1, 2, 3 | Tail]

• list: 1, 2, 3 in the previous list

• nil: []

• atom, char, float, integer, string: constants

• variable: Var

• catch_expr: catch Expr

• list_comp:

[A || A <- L, A > 0]

• list_gen: A <- L in the previous list comprehension

• filter: A > 0 in the previous list comprehension

51

• bin_comp:

{<< <<C/utf8>> || <<C:16>> <= Str >>}

• binary_gen: <<C:16>> <= Str in the previous binary comprehen-
sion

• block_expr: begin ... end

• if_expr: if ... end

• fun_expr: fun () -> ... end

• receive_expr: receive ... end

• case_expr: case Expr of ... end

• try_expr: try ... end

value : returns the value of the expression. It is either the value of a constant
expression or an operator of an operator-based expression.

class (atom): returns the class of the expression: it either can be expr (stands
for single expressions), pattern, or guard.

last (bool): returns true if the expression is the last expression of the clause.

index (int): returns the index of the expression in the containing expression
list.

tailcall (bool): returns true if the expression is a tail call. Tail call expressions
are function applications, which are the last expressions of their containing
clause.

Record entity Records are represented with record entities, which provide
access to record information.

Initial selector. To start a query on the currently selected record, use the
@rec selector.

Selectors. These are the selectors for record entities:

refs (expression): returns the set of expression entities that refer to the record
either by field access, record update or field index.

fields (field): returns the list of fields of a particular record.

file (file): returns the file entity that the record is defined in.

Properties. There is only one record property:

name (string): gives the record’s name.

52

Record field entity The record field entity provides access to each record’s
field-specific information.

Initial selector. Record field-related queries can be started with the @recfield
selector to get the current record field.

Selectors. These are the record field selectors:

refs (expression): returns every expression that refers to the given field either
by field access, index, or record update.

record (record): returns the record which has the particular field.

Properties. Record fields also have only one property:

name (string): returns the name of the field.

Macro entity Preprocessor macro directives can be queried using the macro
entity.

Initial selector. The @macro selector can be used to start a query with the
currently selected macro.

Selectors. The following selectors are available for macros:

refs (expression): returns every expression that refers to the given macro with
the form ?Macro....

file (file): returns the file entity that the macro is defined in.

Properties. Macro entities have the following properties:

name (string): returns the identifier of the macro.

arity (int): returns the arity of a given parametric macro. If the macro is a
constant, the arity is 0.

const (bool): returns true if the given macro is a constant. Note that there are
parametric macros with no parameters, these are treated as non-constant
macros.

6.3.3 Examples

Basic queries As you can read in the introduction, in this language we build
difficult queries from lot of very simple queries. Here are some examples for
simple ones:

@fun.refs : returns a list of expressions which call the pointed function.

53

@file.funs.calls : returns all function calls from current module group by
the module’s own functions.

@file.funs[arity==3] : returns all functions which have 3 arguments.

Advanced queries Let’s see some useful queries:

@file.funs.vars[name=="Expl"] : returns all functions which have a variable
named ”Expl”. It useful when we want to know which functions use
variables with same name.

mods[name=="io"].funs[name==format].refs : returns all io:format calls,
this query is very useful when you have finished your software, and you
want to find all debug messages.

@expr.origin : for example we stand in a variable, and run this query, we get
information about the variable gets its value from where. This function-
ality uses data-flow analysis.

@fun.refs.origin : returns information about the function gets its return
value from where and how its calculated.

6.3.4 Entity details

In this subsection, we list the names of initial selectors, selectors and properties
and their possible abbreviations and synonyms.

Initial selectors
Name Synonyms
@function @fun

@variable @var

@record @rec

@recfield @field

@macro -

@expression @expr

@module @mod

modules mods

@file -

files -

@definition @def

54

File entity
Selectors Properties

Name Synonyms Name Synonyms
function functions,

fun, funs

module is module,

mod, is mod

record records, rec,

recs

header is header

macro macros name -

includes - directory dir

included by - path -

imports -

exports -

Function entity
Selectors Properties

Name Synonyms Name Synonyms
references refs, ref,

reference

exported -

calls - name -

called by - arity -

arguments args bif -

body - pure -

expressions exprs, expr,

expression

defined -

variables vars, var,

variable

module mod

file - has side effect dirty

dynamic

calls

dynref,

dynrefs

spec -

dynamic

calls

dyncall,

dyncalls

dynamic

called by

dyncalled by

Variable entity
Selectors Properties

Name Synonyms Name Synonyms
references refs, ref,

reference

name -

bindings -

fundef -

55

Record entity
Selectors Properties

Name Synonyms Name Synonyms
references refs, ref,

reference

name -

fields -

file -

Record field entity
Selectors Properties

Name Synonyms Name Synonyms
references refs, ref,

reference

name -

record rec

file -

Macro entity
Selectors Properties

Name Synonyms Name Synonyms
references refs, ref,

reference

name -

file - arity -

const -

56

Expression entity
Selectors Properties

Name Synonyms Name Synonyms
fundef - type -

functions function,

fun, funs

value val

variables vars, var,

variable

class -

records record, rec,

recs

last is last

macro macros index -

subexpression sub, esub,

subexpr

tailcall is tailcall

parameter param has side effect dirty

top expression top, top expr

file -

dynamic

functions

dynfun,

dynfuns

6.3.5 Statistics

In this subsection, we list the names of selectors and their possible abbreviations
and synonyms.

6.4 Metric queries embedded into semantic queries

6.4.1 Metrics as semantic query properties

In RefactorErl, metrics can be applied to modules or to functions. Modules are
equivalent to file entities in the semantic query language, and functions are
equivalent to function entities. We can say that a metric is a kind of property
belongs to a file or function entity, so we can simply add the proper metrics
to the properties of entities.

Motivation: checking coding conventions with metrics Usually we have
some coding conventions applied to our modules or functions. With our ex-
tended semantic query language we can check these conventions, and filter im-
proper modules or functions.

We have studied the Effects of software design rules on refactoring in an
earlier report (Erlang Refactoring: New Refactoring Steps, 31.05.2007.). That
report focused on the relation with refactoring, but also listed a number of
“Programming Rules and Conventions”. Most of that design rules refer to pro-
gramming style, revision information, legibility and comments. The currently
implemented metrics do not work with revision or comment information, but

57

that information is present in the semantic program graph, so the implementa-
tion is possible.

Hereinafter we present some design rules from the mentioned report and
some metrics to check these rules.

Rule1: A module should not contain more then 400 lines. When we
would like to filter modules containing more than 400 effective lines of code, we
have to load our modules to RefactorErl system, and enter the following query:

modules[line_of_code > 400]

In the result we will find our too long modules.

Rule2: A function should not contain more then 15 to 20 lines. When
we would like to check, which functions do not fulfil this convention in our
modules loaded into the RefactorErl database, we use the following query:

modules.funs[line_of_code > 20]

Rule3: Use at most two level of nesting, do not write deeply nested
code. It is achieved by dividing the code into shorter functions. With
one of our metrics we can count the nesting level of case expressions, so we can
filter functions with more than two maximum depth of cases. In this example,
we would like to get the result just from our actual module.

@file.funs[max_depth_of_cases > 2]

If we just would like to know, whether all of the functions fulfil this convention
or not, we can simply query the maximum nesting level of cases in the whole
module. If this value is more than two, there is at least one function containing
deeply nested cases.

@file.max_depth_of_cases

At least, let’s filter modules containing functions with too deeply nested cases.

mods[max_depth_of_cases > 2]

Rule4: Use no more than 80 characters on a line. We can filter all
of the functions, which contains lines with more than 80 characters with the
following query:

mods.funs[max_length_of_line > 80]

Rule5: Use space after commas. We have a metric which returns with
the number of cases when we do not fulfil this convention. When a modul or a
function breaks this rule, the result of the metric will be more, then 0.

Filter functions containing at least one case when whitespace misses after a
comma:

mods.funs[no_space_after_comma > 0]

58

Rule6: Every recursive function should tail recursive. Tail recursion
means that we have no recursive call (either direct or indirect) in our function,
just in the last expression. Filter functions that recursive, but not tail recursive:

mods.funs[is_tail_recursive == non_tail_rec]

Short description of the metrics You can find the list of metrics can be
used as properties in semantic queries in tables 2 and 3. The tables give the
original names and synonyms of the metrics.

59

Metrics for files (as properties)
Name Synonyms
module sum mod sum

line of code loc

char of code choc

number of fun num of fun, num of functions,

number of functions

number of macros num of macros, num of macr

number of records num of records, num of rec

included files inc files

imported modules imp modules, imported mod,

imp mod

number of funpath number of funpaths,

num of funpath,

num of funpaths

function calls in fun calls in

function calls out fun calls out

cohesion coh

otp used otp

max application depth max app depth

max depth of calling max depth calling,

max depth of call,

max depth call

min depth of calling min depth calling,

min depth of call,

min depth call

max depth of cases max depth cases

number of funclauses num of funclauses,

number of funclaus,

num of funclaus

branches of recursion branches of rec,

branch of recursion,

branch of rec

mcCabe mccabe

number of funexpr num of funexpr

number of messpass num of messpass

fun return points fun return point,

function return points,

function return point

max length of line -

average length of line avg length of line

no space after comma -

Table 2: List of metrics for modules

60

Metrics for functions (as properties)
Name Synonyms
line of code loc

char of code choc

function sum fun sum

max application depth max app depth

max depth of calling max depth calling,

max depth of call,

max depth call

max depth of cases max depth cases

number of funclauses num of funclauses,

number of funclaus,

num of funclaus

branches of recursion branches of rec,

branch of recursion,

branch of rec

mcCabe mccabe

calls for function calls for fun,

call for function,

call for fun

calls from function calls from fun,

call from function,

call from fun

number of funexpr num of funexpr

number of messpass num of messpass

fun return points fun return point,

function return points,

function return point

max length of line -

average length of line avg length of line

no space after comma -

is tail recursive -

Table 3: List of metrics for functions

Statistics
Name Synonyms
minimum min

maximum max

sum -

mean average, avg

median med

variance var

standard deviation sd

61

7 Basic usage in Emacs/XEmacs

The GNU Emacs and the XEmacs text editors are supported user interfaces.
At least version 22 is required for Emacs and version 21 is required for XEmacs.

Refactoring is performed by an Erlang server process, which stores analyzed
source files in a database. This server is started automatically by the (X)Emacs
interface, and it should be stopped manually before leaving (X)Emacs. Only
those files that are loaded into the database are subjects to refactoring.

7.1 Configuration in XEmacs/Emacs.

Loading RefactorErl. First of all, you need to load the RefactorErl library
into XEmacs or into Emacs. You can do this by placing the following two
lines into your .xemacs/init.el file in the former or into your .emacs file
in the latter case (you can copy&paste it from the README.TXT file from the
RefactorErl package):

(add-to-list ’load-path

"/path-to-root-dir/lib/referl_ui/emacs")

(require ’refactorerl)

If you don’t know where your .emacs file is, the easiest way to locate it is
to start Emacs and type C-x C-f ~/.emacs – this always opens the right file.
Similar in XEmacs type C-x C-f ~/.xemacs/init.el

If you don’t know what C-x C-f is, then you should read the (X)Emacs
tutorial to get more familiar with the environment – you can access it by starting
(X)Emacs and pressing the keys Ctrl+h, and then t.

Basic settings. Before you can run RefactorErl, you must make some settings
through the Emacs customization system.
Type M-x customize-group, then enter refactorerl as the name of the group.
Here you can change the following settings:

1. Refactorerl Base Path: you must enter the full path to the root direc-
tory of the tool. Strictly speaking, this is the only required customization,
every other setting has a sensible default.

2. Refactorerl Erlang Runtime: if your PATH setting doesn’t contain the
Erlang commands, then you should enter the full path to the erl command
here.

3. Refactorerl Data Dir: you can change the location of the database here.

4. Refactorerl Server Type: if you want to experiment with the command
line interface of the tool, you should set this to “Managed server with shell
access”. This feature requires the standard Erlang editing mode.

After setting “Refactorerl Base Path” (and maybe “Erlang Runtime” –

62

(add-to-list ’exec-path "/path_to_erlang/bin")

(add-to-list ’load-path "/path_to_erlang/lib/tools-2.6.2/emacs")

(require ’erlang-start)

), you should be able to use the tool.

7.2 RefactorErl mode

Refactoring functionality is provided through an (X)Emacs minor mode1 that
can be turned on using the command M-x refactorerl-mode. When this mode
is active, there is a status display in the mode line that shows one of the following
values:

• Refact means RefactorErl mode is active, and the file can be refactored.

• Refact:off means RefactorErl mode is active, but the file is not in the
database, so it cannot be refactored.

• Refact:err means the file has some errors.

• Refact:??? means that RefactorErl mode is active, but there is no in-
formation available about the file. Normally this is shown only during
processing, use the “update status” command if it doesn’t go away.

When RefactorErl mode is active, functionality can be accessed through
either the “Refactor” menu or keyboard shortcuts. Key sequences start with
C-c C-r, and a complete list is given by C-c C-r C-h.

As a standard (X)Emacs feature, help on RefactorErl keyboard shortcuts
is available by typing C-h k followed by the keyboard command itself. For
example, C-h k C-c C-r r f provides help on the rename function refactoring.
The same works with menus: selecting a menu item after typing C-h k gives
help on the menu item.

7.3 The “Refactor” menu

RefactorErl provides a user-friendly interface in Emacs and in XEmacs. A
snapshot from the Emacs menu is shown in Figure: 8.

7.3.1 Stopping and starting the server

While working with Erlang files the sever process of the RefactorErl can be
stopped or can be restarted if it is required. The refactoring server can be-
stopped by selecting the “Stop server” menu item from the “Refactor” menu
or typing the shortcut C-c C-r Q. The RefactorErl server can be started (or
restarted) by selecting the menu item “Start server” from the Refactor menu or
typing the C-c C-r R shortcut.

1 A minor mode is an optional Emacs feature that can be turned on or off.

63

Figure 8: RefactorErl in Emacs

7.3.2 Control buffer.

Enabling refactorerl-mode in Emacs automatically starts the “RefactorErl”
control buffer. This buffer contains some RefactorErl related functionality and
settings.

Configuration.

• Application directories - you can add or remove application directories, it
requires a full path to the selected application directory

• Include directories - you can add or remove include libraries with header
files, it requires a full path to the selected include directory

64

• Output directory - you can change the output directory, where to save the
file(s) after the transformation

Reset database. With this item you can reset the content of the entire
database. It removes every loaded module, header file from the database and
deletes the previously set include directories too.

Show Files. Selecting this item lists the content of the database. Every row
corresponds to a loaded file and contains a hyperlink to the actual file. Selecting
a hyperlink opens the corresponding file in a buffer.

Show parse errors. See in 7.3.5.

Clear buffer. Resets the control buffer to the last saved state. If the there are
some changes that have not been saved, these changes will be lost after clearing
the buffer.

7.3.3 Selecting files for refactoring.

A single file can be loaded into the database by opening it, enabling RefactorErl
mode for it, and using the “Add file” command (in the menu, or by the keys
C-c C-r a). The “Drop file” command (C-c C-r d) removes the file from the
database. When a file is modified and saved, it is automatically updated by
removing and re-adding its changed forms.

The whole contents of a directory can also be loaded without going through
the files one-by-one, using the “Load directory” command in the menu (or
C-c C-r L). The actual contents of the database are shown by the command
“Database contents” (C-c C-r C), the list is shown in the “RefactorErl File
List” buffer with links to the files themselves and buttons to remove them from
the database.

7.3.4 Undo.

Undo is supported for all refactorings except for renaming a module. In order
to use it, execute “Undo (one step only)” (C-c C-r U). This restores the files to
their state before the last refactoring step. This restoration includes dropping
all the changes that you may have done to these files. You have been warned.

For renaming a module, the easiest way to undo the transformation is to do
the inverse transformation: rename the module to its previous name.

7.3.5 Show parse errors.

Selecting the “Show parse errors” menu item from the “Refactor” menu lists
the parse errors in the database which arose while adding files to the database
(parse errors for files where the indicated status is “error”). Every parse error is
described in a separate row and gives information about the file which contains

65

the actual parse error, the location in the file and context information about
the error. The parse errors are listed in the “RefactorErl File List” buffer with
links to the location of the error.

7.3.6 Draw graph.

There is interface to visualize the content of the database. Choosing the “Draw
graph” or typing the C-c C-r G shortcut the interface asks for a file name with
extension .dot where to create the description of the database content. The tool
creates the description of the graph to the given path and file, using Graphviz a
graphic visualization of the graph can be created. Note that the resulting graph
may be too large for Graphviz to handle.

7.3.7 Semantic Queries

You can use the “Semantic Query” menu item to run semantic queries or you can
use the shortcut C-c C-r s q. For more details about the queries see Section
6.

7.3.8 Clustering

For details about the clustering see Section 9.

7.3.9 Refactorings

You can use the menu or shortcuts to call a refactoring. For details about
the refactorings see Section 8. The following refactorings are available in ver-
sion 0.9.11.10 of RefactorErl.

66

Transformation name Selection Shortcut
Rename function Def, call C-c C-r r f

Rename header In module C-c C-r r h

Rename macro Def, use C-c C-r r c

Rename module In module C-c C-r r m

Rename record field Def C-c C-r r r f

Rename record Def C-c C-r r r d

Rename variable Def, use C-c C-r r v

Move function Pop-up C-c C-r m f

Move macro Pop-up C-c C-r m m

Move record Pop-up C-c C-r m r

Eliminate function call Function call C-c C-r e f

Eliminate fun expression Fun expression C-c C-r e u

Eliminate variable Occurrence C-c C-r e v

Eliminate macro substitution Substitution C-c C-r e m

Introduce function Expression, body C-c C-r i f

Introduce import Qualifier C-c C-r i i

Introduce function argument Expression C-c C-r i a

Introduce record Tuple C-c C-r i r

Introduce tuple Def, call C-c C-r i t

Introduce variable Expression C-c C-r i v

Transform list comprehension Expression C-c C-r t l

Reorder function parameters Def, call C-c C-r o f

Upgrade interface: regexp Anywhere C-c C-r u i r

67

8 Using refactorings

Note that in the current output of the tool, the layout of the code parts changed
by the refactorings are pretty printed. This does not affect the layout of those
code parts that are left untouched.

8.1 Rename function

The name is an important property of a function. While its actual value does
not influence the semantics of the program, it is a key point in the readability of
the code, and because Erlang programs mainly consist of functions, their names
play an often underestimated role in software development and support. It is
worth the effort to try to choose them well, and to correct misleading names
even when they are user throughout the code. This transformation helps in the
latter case.

Rename function
doit(P) ->

P ! {msg, start}.

start(Lst) ->

lists:forall(

fun doit/1, Lst).

→

Result
send_start(P) ->

P ! {msg, start}.

start(Lst) ->

lists:forall(

fun send_start/1, Lst).

Figure 9: A simple function renaming.

8.1.1 Usage in Emacs

• Add the file that contains the function to the database (C-c C-r a).

• Position the cursor over the name of the function in any clause of the
function definition, any application of the function or the function in an
export list.

• Call the refactoring from the menu or with C-c C-r x r f.

• Type the new function name.

8.1.2 Side conditions

• There must be no function with the given name and the same arity as the
function to be renamed among the functions in the module, the functions
imported in the module, and the auto-imported BIFs.

• There must be no function with the given name and the same arity as the
function to be renamed among the local and imported functions in the
modules that import the function to be renamed.

68

• If the user does not specify a function to be renamed or the specified
function does not exist, the transformation starts an interaction to ask
the user to specify one. The user has to select a function from a radio
group.

8.1.3 Transformation steps and compensations

1. The name label of the function is changed at every branch of the definition
to the new one.

2. In every static call to the function, the old function name is changed to
the new one.

3. Every implicit function expression is modified to contain the new function
name instead of the old one.

4. If the function is exported from the module, the old name is removed from
the export list and the new name is put in it.

5. If the function is imported in an other module, the import list is changed
in that module to contain the new name instead of the old one.

8.2 Rename header

The rename header refactoring renames the header file to the given new name,
and makes changes in those files in which it is referred to.

If the new name of the header file contains a path and this path is not equal
to the original one, the transformation moves the header file to its new place
and renames it.

In the example in Fig. 10 the header1.hrl is renamed to newname. The file
and all of its references are also renamed to newname.

8.2.1 Usage in Emacs

• Add the header file to the database (C-c C-r a).

• Position the cursor into a header file.

• Call the refactoring from the menu or with C-c C-r x r h.

• Type the new name of the header file into a status line.

Side conditions

• The type of the file has to be a header file. If the pointed file is a module,
the transformation will fail.

• The directory must not contain a file having the same name as new name
given. If it contains, the transformation starts an interaction to ask for a
new name.

69

Renaming header.

-module(refmod1).

-include("header1.hrl").

-export([func1/2,func2/2]).

func1(A, B) ->

?Add(A, B).

func2() ->

?MacroFromHeader.

Original header file.
%%header.hrl

-define(MacroFromHeader,

ok).

-define(Add(X, Y),

X + Y).

→

The include form is changed.

-module(refmod1).

-include("newname").

-export([func1/2,func2/2]).

func1(A, B) ->

?Add(A, B).

func2() ->

?MacroFromHeader.

The header file is renamed.
%%newname

-define(MacroFromHeader,

ok).

-define(Add(X, Y),

X + Y).

Figure 10: Renaming header file header1.hrl to newname.

Transformation steps and compensations

1. Rename the header file name to the new name on the graph.

2. Rename the references to the header file in the include forms. (Actually,
the include form will be deleted and recreated with a new path and file
name).

3. Rename or move and rename the file to the new name.

8.3 Rename macro

The “rename macro” transformation renames a macro and all of its occurrences
in either modules and header files. The condition of the renaming is that there
is no name conflict with another record in the file containing the macro, in any
of its includes or anywhere it has been included at.

8.3.1 Usage in Emacs

• Add the file to the database (C-c C-r a).

• Position the cursor over any macro definition or application.

70

Rename LessEq to Leq
-define(LessEq, =<).

max(X,Z) ->

if

X ?LessEq Z -> Z;

X>=Z -> X

end.

→

LessEq renamed to Leq
-define(Leq, =<).

max(Y,Z) ->

if

Y ?Leq Z -> Z;

Y>=Z -> Y

end.

Figure 11: Renaming macro LessEq to Leq

• Call the refactoring from the menu or with C-c C-r x r c.

• Type the new macro name.

8.3.2 Side conditions

• No macro already exist with the same new name in either

– in a file hosting definition or usage of the macro,

– in files included by the said,

– in files that include the said

• If one of the above conditions fails, the transformation starts an interaction
to ask for a new macro name.

• If the user does not specify a macro or the specified macro does not exist,
the transformation starts an interaction to ask for a macro.

8.3.3 Transformation steps and compensations

1. The macro name is replaced with the new name at both definition and all
usage sites

8.4 Rename module

The rename module refactoring renames a module with the given new name.
Renames the file and make changes in other file where this module is referenced.

In the example in Fig. 12 the mod1 module is renamed to newmod. The file
is also renamed to newmod.erl.

8.4.1 Usage in Emacs

• Add the file that contains the module to the database (C-c C-r a).

• Position the cursor over the name in the module attribute.

• Call the refactoring from the menu or with C-c C-r x r m.

71

Module to be renamed.

-module(mod1).

-export([add/2]).

add(A,B) -> A + B.

Renamed module.

-module(mod2).

-export([add/1]).

add([]) -> [];

add[{A,B}|Tail]) ->

[mod1:add(A,B)

|add(Tail)].

→

Module qualifier.

-module(newmod).

-export([add/2]).

add(A,B) -> A + B.

Qualifier renamed.

-module(mod2).

-export([add/1]).

add([]) -> [];

add([{A,B}|Tail]) ->

[newmod:add(A,B)

|add(Tail)].

Figure 12: Renaming module mod1 to newmod.

• Type the new module name.

8.4.2 Side conditions

• The given new name should be a legal file name.

• There must not exist another module with the given new name in the
graph.

• There must not exist another file with the given new name in the directory
of the module to be renamed.

• If one of the above conditions fails, the transformation starts an interaction
to ask for a new module name.

8.4.3 Transformation steps and compensations

1. Rename the current module name to the new name.

2. Rename the collected module qualifiers to the given new name.

3. Rename the references to the module in the import lists.

4. Rename the file to the new name.

72

8.5 Rename record

This refactoring renames records in modules or header files. After the transfor-
mation, the old name will be replaced by the new name in the record definition
and in every reference to the given record (e.g. record field access or field update
expressions). The condition of the renaming is that there is no name conflict
with another record in the file (which contains the given record), in its includes,
or where it is included (the latter is only possible when we are renaming in a
header file).

Rename record
-record(person, {name, age}).

rename(Arg, New) ->

#person{name=Name} = Arg,

io:format("%s", [Name]),

Arg#person{name=New}.

→

Result
-record(member, {name, age}).

rename(Arg, New) ->

#member{name=Name} = Arg,

io:format("%s", [Name]),

Arg#member{name=New}.

Figure 13: Renaming record “person” to “member”

8.5.1 Usage in Emacs

• Add the file that contains the record definition to the database (C-c C-r

a).

• Position the cursor over the name in the record definition.

• Call the refactoring from the menu or with C-c C-r x r r d.

• Type the new record name.

8.5.2 Side conditions

• There must be no record with the new name

– in the file that contains the record,

– in files which are included by this file,

– in files which include this file.

• If one of the above conditions fails, the transformation starts an interaction
to ask for a new record name.

• If the user does not specify a record, the transformation starts an inter-
action to ask the user to specify a record.

73

8.5.3 Transformation steps and compensations

1. The record name is changed to the new name in the definition of the record
and in every record expression that refers the record.

8.6 Rename record field

The rename record field transformation supports renaming the specified field of
a record. The name of the field is replaced in the definition form and in every
referrer expression and token to the given new name. To the field belongs a
semantic field object linked to the record, it stores the field name. The data of
this object is updated too.

Rename record
-record(member, {name, age}).

rename(Arg, New) ->

#member{name=Name} = Arg,

io:format("%s == %s",

[Name, Arg#member.name]),

Arg#member{name=New}.

→

Result
-record(member, {id, age}).

rename(Arg, New) ->

#member{id=Name} = Arg,

io:format("%s == %s",

[Name, Arg#member.id]),

Arg#member{id=New}.

Figure 14: Renaming field name to id

8.6.1 Usage in Emacs

• Add the file that contains the record definition to the database (C-c C-r

a).

• Position the cursor over the field name in the record definition.

• Call the refactoring from the menu or with C-c C-r x r f.

• Type the new field name.

8.6.2 Side conditions

• The record must have no field with the same name as the given new field
name. If it has, the transformation starts an interaction to ask for a new
record field name.

• If the user does not specify a record field, then the transformation starts
an interaction to ask the user to specify one.

8.6.3 Transformation steps and compensations

1. The field name is changed to the new name in the definition of the record
and in every record expression that refers the field.

74

8.7 Rename variable

The “rename variable” transformation renames a variable and all of its occur-
rences. The only semantic information it requires is the scope and visibility of
the variables.

Rename X to Y
max(X,Z) ->

if

X=<Z -> Z;

X>=Z -> X

end.

→

X renamed to Y
max(Y,Z) ->

if

Y=<Z -> Z;

Y>=Z -> Y

end.

Figure 15: Renaming variable X to Y

8.7.1 Usage in Emacs

• Add the file that contains the variable to the database (C-c C-r a).

• Position the cursor over any instance of the variable.

• Call the refactoring from the menu or with C-c C-r x r v.

• Type the new variable name.

8.7.2 Side conditions

• The new variable name does not exist in the scope of the variable, ei-
ther as a defined variable or as a visible variable. If it exists then the
transformation starts an interaction to ask for a new variable name.

• If the user does not specify a variable, the transformation starts an in-
teraction to ask for a variable. It gives a list of variables which can be
reached from the selected function clause.

8.7.3 Transformation steps and compensations

1. Replace every occurrence of the variable with the new name. In case of
variable shadowing, other variables with the same name are not modified.

8.8 Move function

Modules contain functions which consist of one or more clauses. Moving func-
tions between modules is a possible refactoring step. This transformation must
move each clauses of the given functions from the source module to the target
module and have to compensate every reference of functions and of entities used
by the functions.

75

The move function refactoring is useful in module clustering, there it is
needed to split the library modules into parts that are determined by the clus-
ters.

from.erl
-module(from).

-export([print/1,pzip/1]).

print(Pairs) ->

io:format(

"~p~n",

pzip(Pairs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

xlists.erl
-module(xlists).

-export([flatsort/1]).

flatsort(Xs) ->

lists:usort(

lists:flatten(Xs)).

→

from.erl
-module(from).

-export([print/1]).

print(Pairs) ->

io:format(

"~p~n",

xlists:pzip(Pairs)).

xlists.erl
-module(xlists).

-export([flatsort/1]).

-export([pzip/1]).

flatsort(Xs) ->

lists:usort(

lists:flatten(Xs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

Figure 16: Move function example

8.8.1 Usage in Emacs

• Add the source and the destination file to the database (see section 7.3.3)

• Call the refactoring from the menu or with C-c C-r m f

• Fill out the form that pops up

– Type the name of the target module

– Select the functions to be moved

• Start the transformation with the “Move” button

8.8.2 Side conditions

• The names of the selected functions should not conflict with other func-
tions in the target module, neither with those imported from another

76

module (overloading). Furthermore, the name should be a legal function
name in all modules.

• If the user do not select functions to be moved, the transformation starts
an interaction. The tool gives a checkbox list to the user to select the
functions to be moved.

• Macro name conflicts must not occur in the target module, that is, macro
names used in the functions must refer to the same macro definition in
the source and in the target module. This applies to macros used in these
macros too.

• Record name conflicts must not occur in the target module, that is, record
names used in the functions must refer to the same record definition in
the source and in the target module.

8.8.3 Transformation steps and compensations

1. In the refactoring step the functions to be moved have to be marked either
at the definition or in the export list. A list has to be created from the
function name and arity pairs. Duplicity should be avoided and only real
function names and arities should occur in the list.

2. The new place of the functions, or the target module, has to be asked
from the user. If there is no such module in the tool database, it has to
be loaded.

3. If the transformation does not disobey the rules, the functions have to be
deleted from their original places together with all their clauses.

4. The moved functions have to be placed to the end of the new module.

5. Functions have to be deleted if they appear in the export list of the original
module. (If they were exported, they have to be exported in their new
place, too.)

6. The functions, which are called in the moved function but remain in the
original module, have to be put in an export list in the original module.

7. If the functions to be moved are called in other functions from the original
module, they have to be exported in the new module and the calls in the
original module have to be changed to qualified calls.

8. If the moved functions are referred to by qualified names, the module
names have to be changed to the new module name.

9. After the transformation the module names in the import lists have to be
changed to the name of the target module.

10. The moved function in the target module has to be deleted from the import
list.

77

11. Records and macros used in the moved function have to be made visible
in the target module, either by moving them into header files (or includ-
ing the header file if the definition is already in one), or copying their
definition.

8.9 Move macro

This transformation moves macro definitions between two files. Source and
target files can be either modules or header files, the conditions are slightly
different in every case. The goal of the transformation is to make the moved
macro definitions available in every place where they are used.

header.hrl
-define(Ok, ok).

mm.erl
-module(mm).

-define(Person(Name,Age),

{Name,Age}).

f() -> ?Person("John",33).

→

header.hrl
-define(Ok, ok).

-define(Person(Name,Age),

{Name,Age}).

mm.erl
-module(mm).

-include("client.hrl").

f() -> ?Person("John",33).

Figure 17: Move macro example

8.9.1 Usage in Emacs

• Add the source and the destination file to the database (see section 7.3.3)

• Call the refactoring from the menu or with C-c C-r m m

• Fill out the form that pops up

– Type the name of the target module

– Select the macros to be moved

• Start the transformation with the “Move” button

8.9.2 Side conditions

• The names of the macros to be moved must not clash with existing macro
names in none of:

– the target file,

– the target’s included files

– files where the target is included

78

• If the user does not specify the macros to be moved, the transformation
starts an interaction to ask the user to specify macros. The user has to
select the macros to be moved from a checkbox list.

• Moving macros from a header to a module is only allowed if there exist no
other module that both includes the header and uses some of the macros
to be moved.

• An include form can only by introduced when it does not cause inconsis-
tency at the place of inclusion.

8.9.3 Transformation steps and compensations

1. The macro definitions are removed from the source file.

2. If the target is a header file that does not exist, the file is created.

3. The macro definitions are placed at the end of the target header file, or
before the first function of the target module file.

4. If a macro is moved into a header file, then every module that uses the
record is changed to include the target header file. This is not an issue
when the target is a module file.

8.10 Move record

This transformation moves record definitions between two files. Source and
target files can be either modules or header files, the conditions are slightly
different in every case. The goal of the transformation is to make the moved
record definitions available in every place where they are used.

client.hrl
-record(conn, {ip, port=80}).

-record(msg, {sender, text}).

messages.hrl
-record(dmsg, {date, text}).

client.erl
-include("client.hrl").

sendmessage(Msg) ->

?SERVER ! #msg{text=Msg}.

→

client.hrl
-record(conn, {ip, port=80}).

messages.hrl
-record(dmsg, {date, text}).

-record(msg, {sender, text}).

client.erl
-include("client.hrl").

-include("messages.hrl").

sendmessage(Msg) ->

?SERVER ! #msg{text=Msg}.

Figure 18: Move record example

79

8.10.1 Usage in Emacs

• Add the source and the destination file to the database (see section 7.3.3)

• Call the refactoring from the menu or with C-c C-r m r

• Fill out the form that pops up

– Type the name of the target module

– Select the records to be moved

• Start the transformation with the “Move” button

8.10.2 Side conditions

• The names of the records to be moved do not clash with existing record
names

– in the target file,

– in files that are included in target and

– in files where the target file is included.

• If the user does not specify the records to be moved, the transformation
starts an interaction to ask the user to specify records. The user has to
select the records to be moved from a checkbox list.

• Moving records from a header file to a module file is only permitted if no
other modules include the header file and use some of the records to be
moved.

• If a file inclusion has to be introduced during the transformation, this
inclusion must not cause inconsistency at the place of the inclusion.

8.10.3 Transformation steps and compensations

1. The record definitions are removed from the source file.

2. If the target is a header file that does not exist, the file is created.

3. The record definitions are placed at the end of the target header file, or
before the first function of the target module file.

4. If a record is moved into a header file, then every module that uses the
record is changed to include the target header file. This is not an issue
when the target is a module file.

80

8.11 Eliminate function call

The eliminate function call refactoring step substitutes the selected applica-
tion with the corresponding function body and executes compensations. The
function may consist of one or more function clauses and may have guard ex-
pression(s), inline can handle these cases.

In the example in Fig. 19 the sort/1 application is inlined. The application
is replaced with a case expression.

Eliminate function call

-module(in).

-export([sort/2]).

sort(A, B) ->

sort({A, B}).

sort({A, B}) when A > B ->

{A, B};

sort({A, B}) ->

{B, A}.

→

sort/1 inlined

-module(in).

-export([sort/2]).

sort(A, B) ->

case {A, B} of

{A, B} when A > B ->

{A, B};

{A, B} ->

{B, A}

end.

sort({A, B}) when A > B ->

{A, B};

sort({A, B}) -> {B, A}.

Figure 19: Eliminate function application of sort/1.

8.11.1 Usage in Emacs

• Add the file that contains the function application to be inlined to the
database (C-c C-r a).

• Position the cursor over a function application.

• Call the refactoring from the menu or with C-c C-r e f.

8.11.2 Side conditions

• Applying the inline function must not cause variable name conflicts. A
variable name conflict arises when the same variable name is used in the
body of the function clause and in the scope of the selected function ap-
plication, except the variables which are bound in the formal parameters
where the structure of the formal and the actual parameters are equivalent.

81

• If the function is defined in other module:

– the function do not contain local (not exported) function applications
in its body.

– macro name conflicts must not occur in the current module, that is,
macro names used in the functions must refer to the same macro
definition in the current and in the definition module. This applies
to macros used in these macros too.

– record name conflicts must not occur in the current module, that is,
record names used in the functions must refer to the same record
definition in the current and in the definition module.

• If the user does not specify a function application or the specified function
does not exist, the transformation starts an interaction to ask the user to
specify one. The user has to select a function from a radio group.

8.11.3 Transformation steps and compensations

1. Find the corresponding function definition and copy the function clause(s)
and create (if it is needed) a corresponding structure from the expressions
of the body(ies), the guard expressions (if there is any) and from the
patterns of the function clause(s).

2. Where the actual and formal parameters are structurally equivalent, create
variable name pairs and rename the corresponding variables in the copied
body.

3. Where the formal and structural parameters are not equivalent, create a
match expression from these parameters. The left hand side is a tuple
from the formal parameters, and the right hand side is a tuple from the
actual parameters.

4. If the function consists of

• one clause and does not have guard expression and the body of the
function contains only one expression and match expressions should
not be created from the parameters, replace the application with this
single expression.

• one clause and does not have guard expression and the body of the
function contains more than one expression and the parent expression
of the selected application is a clause, replace the application with
the sequence of the expressions from the body of the function clause
extended with the created match expression.

• one clause and does not have guard expression and the body of the
function contains more than one expression and the selected applica-
tion is a subexpression:

82

– create a begin-end block from the sequence of the expressions
from the body of the function clause extended with the created
match expression

– replace the application with this begin-end block.

• more than one clause, or it has guard expressions (or both) or vari-
ables appear multiple times with the same name in a pattern list:

– create a case expression from the function clause body(ies) ex-
pression(s), guard and pattern expressions.

– replace the application with this case expression.

5. If the definition of the function is in another module

• qualify the applications in the copied body which call exported func-
tions from the defining module.

• qualify the applications in the copied body which call imported func-
tions.

• copy or import record and macro definitions to the current module
which are used in the copied body(ies).

8.12 Eliminate macro substitution

The eliminate macro substitution refactoring step substitutes a selected macro
application with the corresponding macro body and takes care of necessary
compensations.

Eliminate macro

-module(inlmac).

-define(Add(A,B),A+B).

double(A)-> ?Add(A,A).

→

Macro inlined

-module(inlmac).

-define(Add(A,B),A+B).

double(A)->A+A.

Figure 20: Eliminate macro application ?Add(A,A).

8.12.1 Usage in Emacs

• Add the source file to the database (C-c C-r a).

• Position the cursor over a macro application.

• Call the refactoring from the menu or with C-c C-r e m.

83

8.12.2 Side conditions

• The selected macro must not contain stringification or another macro in
its definition.

• The selection must not be inside a macro definition.

• If the selection is not specify a macro usage the transformation starts an
interaction to let the user specify one. It gives a list with the possible
macro usages.

8.12.3 Transformation steps and compensations

1. All the side conditions must met.

2. The following must be gathered that are necessary to fully finish the trans-
formation:

• Edges to be deleted: those between ‘subst’ and both its children and
the macro definition; ones connecting all intermediate ‘token’ nodes
with ‘subst’, the containing expression and the original lexical tokens;
and the one between the ‘subst’ node and its arguments.

• Nodes to be deleted: those lexical children of the ‘subst’ nodes pa-
rameter child which do not participate in the final solution (commas),
children of the ‘subst’ node, the ‘subst’ node itself and the interme-
diate ‘token’ nodes.

• Edges to be rewired: those edges that originally connected a non-
shared lexical node created specifically for the given substitution.

• Nodes to be created: those nodes which must be cloned from the
macro definition because they are shared between all usages.

8.13 Eliminate fun expression

The “eliminate fun expression” transformation expands an implicit fun expres-
sion into an explicit one. This transformation can be done separately, but
sometimes it is needed by other transformations as a compensation step. One
such example is the module-qualifier correction in the “move function” refac-
toring. When an implicit fun expression need module qualifying, the result
will be like this: fun module:function/2. This form is not supported in
older Erlang versions. But when we expand the fun expression, a simple func-
tion application appear instead of the short form (fun function/2 equals to
fun(V1, V2) -> function(V1, V2) end, and it will become able to module-
qualifying.

When we want to modify the function application or just don’t want to
use this syntactical sugar (the implicit form of fun expression), we can use this
transformation to expand the expression.

84

near.erl
-module(near).

-export([f/0]).

f() ->

fun far:away/2.

→

near.erl
-module(near).

-export([f/0]).

f() ->

fun(V1, V2) ->

far:away(V1, V2)

end.

Figure 21: Eliminating the fun expression fun far:away/2

8.13.1 Usage in Emacs

• Add the file that contains the function application to be expanded to the
database (C-c C-r a).

• Position the cursor over the name of the function to be expanded.

• Call the refactoring from the menu or with C-c C-r e u.

8.13.2 Side conditions

• The selected expression should be an implicit fun expression or part/subexpression
of an implicit fun expression

8.13.3 Transformation steps and compensations

1. If the implicit fun expression is found, the new syntax structure is created
and the old expression is replaced with the new one.

8.14 Eliminate variable

In this refactoring, all instances of a variable are replaced with its bound value.
Those instances of the variable where the value of the instance is not used can
be dropped.

Eliminating variable Y
func(X) ->

Y=X+2,

Pid ! {value,Y},

Y.

→

Result after elimination
func(X) ->

Pid ! {value,X+2},

X+2.

Figure 22: Replacing all instances of variable Y with its value.

85

8.14.1 Usage in Emacs

• Add the file that contains the variable to be eliminated to the database
(C-c C-r a).

• Position the cursor over any instance of the variable.

• Call the refactoring from the menu or with C-c C-r e v

8.14.2 Side conditions

• The variable has exactly one binding occurrence on the left hand side of
a pattern matching expression, and not a part of a compound pattern.

• The expression bound to the variable has no side effects.

• Every variable of the expression is visible (that is, not shadowed) at every
occurrence of the variable to be eliminated.

• If the selection is not specify a variable but it is inside a function clause,
the tool gives a list to the user to select a variable. The list contains the
reachable variables in the given function clause.

8.14.3 Transformation steps and compensations

1. Every occurrence of the variable is substituted with the expression bound
to it at its binding occurrence, with parentheses around the.

2. If the result of the match expression that binds the variable is discarded,
the whole match expression is removed. Otherwise, the match expression
is replaced with its right hand side.

8.15 Introduce function

A function definition might contain an expression or a sequence of expressions
which can be considered as a logical unit, hence a function definition can be
created from it. The extracted function is lifted to the module level, and it is
parametrized with the free variables of the original expressions: those variables
which are bound outside of the expressions, but the value of which is used by
the expressions.

8.15.1 Usage in Emacs

• Add the file that contains the function to be extracted to the database
(C-c C-r a).

• Mark the exact part of the source you want to extract.

• Call the refactoring from the menu or with C-c C-r i f.

• Type the new function name.

86

quadratic.erl
-module(quadratic).

-export([f/0]).

solve(A,B,C) ->

D := B * B - 4 * A * C,

if

D == 0 ->

{-B / 2 / A};

D > 0 ->

S = math:sqrt(D),

{-(B+S)/2/A,

-(B-S)/2/A}.

D < 0 ->

no_solution

end.

→

quadratic.erl
-module(quadratic).

-export([f/0]).

solve(A,B,C) ->

D := B * B - 4 * A * C,

if

D == 0 ->

{-B / 2 / A};

D > 0 ->

two_sol(A, B, D);

D < 0 ->

no_solution

end.

two_sol(A, B, D) ->

Sqrt = math:sqrt(D),

{-(B + Sqrt) / 2 / A,

-(B - Sqrt) / 2 / A}.

Figure 23: Introducing the new function two sol

8.15.2 Side conditions

• The name of the new function should not conflict with another function,
either defined in the same module, or imported from another module (over-
loading). Furthermore, the name should be a legal function name.

• If one of the above conditions fails, the transformation starts an interaction
to ask for a new function name.

• The starting and ending positions should delimit a sequence of expressions.

• Variables with possible binding occurrences in the selected sequence of
expressions should not appear outside of the sequence of expressions.

• The extracted sequence of expressions cannot be part of a guard sequence.

• The extracted sequence of expressions cannot be part of a pattern.

• The extracted sequence of expressions cannot be part of macro definition.

8.15.3 Transformation steps and compensations

1. Collect all variables that the selected sequence of expressions depends on.

2. Collect variables from the selected variables in step 1, which has binding
occurrence out of the selected part of the module.

87

3. Add a new function definition to the current module with a single alter-
native. The name of the function is an argument to the refactoring. The
formal parameter list consists of the variables selected in step 2.

4. Replace the selected sequence of expressions with a function call expres-
sion, where the name of the function is given as an argument to the refac-
toring, and the actual parameter list consists of the variables selected in
step 2.

5. The order of the variables must be the same in steps 3 and 4.

6. If the selected expression is a block-expression, eliminate the begin-end
keywords from the expression in the body of the created new function.

8.16 Introduce import

This refactoring imports the functions of the selected module that are used in
the current file and removes the module qualifiers from the function calls of this
module.

Introduce import

-export([my_sort/1]).

my_sort(A)->

lists:sort(A).

→

Import introduced
-export([my_sort/1]).

-import(lists, [sort/1]).

my_sort(A)->

sort(A).

Figure 24: Import the sort/1 function from the lists module.

8.16.1 Usage in Emacs

• Add the source file to the database (C-c C-r a).

• Select the module qualifier of a function application.

• Call the refactoring from the menu or with C-c C-r i i.

8.16.2 Side conditions

• No local function of the file has the same name and arity as the functions
of the module that are used or imported in the file.

• No imported function in the file has the same name and arity as functions
of the module that are used in the file.

88

• If there is a problem with the given module name which functions will be
imported, the transformation asks for a new module. It gives a list to the
user to specify a module. The list contains the modules from where the
source module has already imported functions.

8.16.3 Transformation steps and compensations

1. In case there is no import list of the module in the file a new import list
containing the functions of the module that are used in the file is added
to the file.

2. In case there is only one import list of the module in the file the rest of
the functions used in the file are added to this list.

3. In case there is more then one import list of the module, the contents of
this list will be merged in one, and the rest of the functions used in the
file are added to this list.

4. The module qualifiers of the module are removed from the corresponding
functions.

8.17 Introduce function argument

This refactoring generalizes a function definition by selecting an expression (or
an expression sequence), and makes this the value of a new parameter added to
the definition of the function. The actual parameter at every call site becomes
the selected part with the corresponding compensation.

The generalized function will not be exported from the module. If the orig-
inal function is exported from the module, a new function definition with the
original arity will be created which calls the generalized function with the cor-
responding arguments.

In the example in Fig. 25 a function for double the elements of a list is
generalized by selecting the subexpression 2. The subexpression is replaced with
the variable N and the subexpression is added to the argument-list of function
call in the body of f(Z) function.

8.17.1 Usage in Emacs

• Add the file that contains the function to the database (C-c C-r a).

• Select the expression along which the generalization should be done.

• Call the refactoring from the menu or with C-c C-r i a.

• Type the name for the new function argument.

89

Introduce funtion parameter

-module(gen1).

-export([double/1]).

double(List) ->

[2*X || X <- List].

f(Z)->

double(Z).

→

double/1 generalized

-module(gen1).

-export([double/1]).

double(List) ->

double(List,2)

double(List, N) ->

[N*X || X <- List]

f(Z)->

double(Z, 2).

Figure 25: Introduce a new parameter to function double/1.

8.17.2 Side conditions

• The name of the function with its arity increased by one should not conflict
with another function, either defined in the same module, imported from
another module, or being an auto-imported built-in function.

• The new variable name does not exist in the scope of the selected expres-
sion(s) and must be a legal variable name. If the new variable name does
not keep these conditions, the transformation starts an interaction to ask
for a new variable name.

• The starting and ending positions should delimit an expression or a se-
quence of expressions.

• The selected expressions do not bind variables that are used outside the
selection.

• Variable names bound by the expressions do not exist in the scopes of the
generalized function calls.

• The expressions to generalize are not patterns and they do not call their
containing function.

• If the selection is part of a list comprehension, it must be a single expres-
sion and must not be the generator of the comprehension.

• The extracted sequence of expressions are not part of a macro definition,
and are not part of macro application parameters.

90

8.17.3 Transformation steps and compensations

1. If the selected expression does not contain any variables:

• Give an extra argument (a simple variable) to the function. The
name of this argument is the name given as a parameter of the trans-
formation.

• Replace the expression with a variable expression.

• Add the selected expression to the argument list of every call of the
function.

2. If the selected expression contains variable(s) or contains more than one
expression or has a side-effect:

• Add a new argument (a simple variable) to the function definition
with the given variable name.

• Replace the expression with an application. The name of the appli-
cation is the given variable name, the arguments of the application
are the contained variables.

• Add a fun expression to the argument list of every call of the function.
The parameters of the fun expression are the contained variables and
the body is the selected expression.

3. If the selected expression is part of a guard expression:

• Give an extra argument (a simple variable) to the function. The
name of this argument is the name given as a parameter of the trans-
formation.

• Replace the guard expression with a variable expression with that
new name.

• Add the selected expression to the argument list of the function calls.

• If the selected expression contain formal parameter, replace this with
the actual parameter.

• If the selected guard is a conjunction or a disjunction, create an
andalso or an orelse expression and add this to the argument list
of the function call.

4. If the generalized function is recursive, than instead of add the selection to
the argument list of the function calls in the body, add the new parameter
to the argument list.

5. If the generalized function is exported from the module, add a new function
definition to the current module with the same parameters and guard. The
body of this function is a call of the generalized function.

6. If the selection contains macro application/record expression move the
definition of the macro/record before the first call of function.

91

8.18 Introduce record

Given a tuple skeleton, this transformation converts it to a record expression
and inserts compensating record expressions or record update expression at the
needed places.

Introduce record

-export([mul/2]).

mul({Re1,Im1},{Re2,Im2})->

{Re1*Re2-Im1*Im2,

Re1*Im2+Im1*Re2}.

→

Record introduced

-export([mul/2]).

-record(cart, {re, im}).

mul(#cart{re=Re1, im=Im1},

#cart{re=Re2, im=Im2})->

#cart{re=Re1*Re2-Im1*Im2,

im=Re1*Im2+Im1*Re2}.

Figure 26: Introduce record cart with fields re and im.

8.18.1 Usage in Emacs

• Add the source file to the database (C-c C-r a).

• Select a tuple skeleton.

• Call the refactoring from the menu or with C-c C-r i r.

• Type the name of the record and the names of the fields.

8.18.2 Side conditions

• The name of the record we introduce should not conflict with another
record. Furthermore, the name and field names should be a legal record
name. If the name or the field name is not legal, the transformation starts
an interaction to ask for a new name.

• The starting and ending positions should delimit a tuple skeleton.

• The transformed tuple cannot be embedded in a list comprehension, list
or another tuple.

• The given field names number should match the number of the tuple’s
elements.

• The selected tuple cannot be a parameter of a function expression.

• If the selected tuple is a function parameter, there must not be an implicit
reference to the function.

92

8.18.3 Transformation steps and compensations

1. The refactoring finds every tuple in the function pattern, which has the
same type.

2. The transformation checks every function clause to find those, which pa-
rameter contains at least one same typed tuple.

3. The refactoring collects every function calls, which calls the collected func-
tion clause.

4. The refactoring finds all function calls in the collected function clauses,
where the parameter contains at least one same typed tuple.

5. The transformation collects the return parameter, if it is a same typed
tuple.

6. The refactoring finds every function calls in the collected function clauses,
which parameter contains at least one same typed tuple. The transfor-
mation finds that function and the collection starts again from the first
step.

7. If the record didn’t exist before, its definition is constructed.

8. The collected tuples in the function patterns are replaced to record ex-
pressions. If a function clause contains function calls, the affected record
gets bound with a variable name.

9. The return value is transformed to a record expression, if it was collected.

10. The unused variabled (in the record expression) are elliminated.

11. Those function calls parameters, which calls a collected function, are trans-
formed to record expression.

12. If a collected function’s return parameter is a same typed tuple, and the
calling place is match expression, the left side is transformed to a record
expression too.

8.19 Introduce tuple

In this transformation, consecutive arguments of a function are contracted into a
tuple. This transformation addresses the formal parameter list of all the clauses
in the function definition as well as the actual parameter list in each perceptible
(viz. by static analysis) call of the function. The transformation affects more
than one module if the function is exported.

The example in Fig. 27 illustrates the operation of the transformation on a
function with a single clause. Both the definition of step/2 and its application
in gcd/2 are changed.

93

Original

step(A,B) -> {B, A rem B}.

gcd(A,B) ->

if

B==0 -> A;

true ->

{X,Y} = step(A,B),

gcd(X,Y)

end.

→

Transformed

step({A,B}) -> {B, A rem B}.

gcd(A,B) ->

if

B==0 -> A;

true ->

{X,Y} = step({A,B}),

gcd(X,Y)

end.

Figure 27: Tupling the two arguments of function step.

8.19.1 Usage in Emacs

• Add the file that contains the function whose arguments are to be tupled
to the database (C-c C-r a).

• Mark the arguments to be tupled in the function definition.

• Call the refactoring from the menu or with C-c C-r i t.

8.19.2 Side conditions

• The function must be declared at the top level of a module, not a function
expression.

• If the number of parameters that should be contracted into tuple is greater
than one the arity of function will be changed. In this case the function
with new arity should not conflict with other functions.

– If the function is not exported, it should not conflict with other func-
tions defined in the same module or imported from other modules.

– If the function is exported, then besides the requirement above, for
all modules where it is imported, it should not conflict with functions
defined in those modules or imported by those modules.

8.19.3 Transformation steps and compensations

1. Change the formal parameter list in every clause of the function: con-
tract the formal arguments into a tuple pattern from the first to the last
argument that should be contracted.

2. If the function is exported from the module, then the export list has to
be modified: the arity of the function is updated with new arity.

94

3. If the function is exported and another module imports it, then the arity
must be adjusted in the corresponding import list of that module.

4. Implicit function references are turned into fun expressions that call the
function, and the result is handled as any other function call.

5. For every application of the function, modify the actual parameter list by
contracting the actual arguments into a tuple from the first to the last
argument that should be contracted.

8.20 Introduce variable

During the introduce variable transformation, a new match expression is created
that binds the selected expression to the variable that the user has given as
input, and all instances of the expression is changed to the variable.

Merge A+B
foo(A,B) ->

peer ! {note, A+B},

A+B.

→

Result after merging
foo(A,B) ->

V = A+B,

peer ! {note, V},

V.

Figure 28: Example of Introduce variable transformation.

Merge expression duplicates refactoring is executed in the function (Figure
28), A+B expression in the Message-Passing (peer ! note,A,B) is stored in V
variable, then all instances of the expression are changed to V variable.

8.20.1 Usage in Emacs

• Add the file that contains the expression to be merged to the database
(C-c C-r a).

• Mark the expression whose duplicates are to be merged.

• Call the refactoring from the menu or with C-c C-r i v.

• Type the new variable name.

8.20.2 Side conditions

• The expression cannot be substituted if any of its sub-expressions have
side effects.

• The transformation cannot be executed if the expression is in the head of
a list comprehension, in a pattern or in a guard expression.

• If the expression occurs in a generator expression, it should not contain
variables that are bound by generator patterns.

95

• The given variable name should not already exist in the given scope in
order to avoid name clashes.

• If the given variable name is not legal then the transformation starts an
interaction to ask for a new variable name.

8.20.3 Transformation steps and compensations

1. Determine the insertion point. The insertion point is the first possible
location within a body where all of the variables of the expression have
already received their binding. If the selected expression contains no vari-
ables, the insertion point may be in any containing scope; currently the
innermost scope is chosen. If the selected expression contains at least one
variable, the insertion point is in the outermost scope that contains all
variables.

2. Insert a new match expression to the insertion point that binds the ex-
pression to the new variable. If there is an expression to be replaced at
this position, the match expression should replace it.

3. Substitute all other instances of the expression to the new variable. Note
that not all expressions whose structure is identical to the expression are
instances of the expression: all variables have to have the same binding,
and therefore the same scope. These substitutions should remove sur-
rounding parentheses from instances.

8.21 Transform list comprehension

Turn lists:map, lists:foreach and lists:filter calls into list comprehen-
sion syntax, or do it backwards.

The two main cases of the transformation:

• lists:map/2 or lists:filter/2 or lists:foreach/2 to list comprehen-
sion

– The transformation is applied only if lists:map/2 or lists:filter/2
or lists:foreach/2 is selected

– If the first parameter is an explicit or an implicit fun expression the
arity of the function must be equal to 2

– If the first parameter is not a fun it is not checked what it really is

– It is not checked wheter the second parameter really a list is

• list comprehension to lists:map/2 and/or lists:filter/2

– The transformation does not supports list comprehensions that con-
tain more than one list generator

– The result is a lists:filter/2 or a lists:map/2 or a composition of a
lists:filter/2 and a lists:map/2

96

– The transformation does not optimise according to unused variables

– It is not checked wheter the generator really a list is

—————————————-

List comprehension form
f(Xs) ->

[X || X <- Xs, X < 5].
↔

Function call form
f(Xs) ->

lists:filter(

fun(X) ->

X < 5

end, Xs).

Figure 29: Transform between two equivalent forms of list filtering im.

8.21.1 Usage in Emacs

• Add the source file to the database (C-c C-r a).

• Select the construct to be transformed (a list comprehension or a call to
lists:map/2, lists:filter/2 or lists:foreach/2).

• Call the refactoring from the menu or with C-c C-r t l.

8.21.2 Side conditions

• lists:map/2 or lists:filter/2 or lists:foreach/2 to list comprehen-
sion

– The selection should contain an application of one of the relevant
functions

– If the first parameter is an implicit function or an explicit function,
the arity has to be 1.

• list comprehension to lists:map/2 and/or lists:filter/2

– The list comprehension can have only one generator; transforming
more complex comprehensions would likely complicate the code even
more.

8.21.3 Transformation steps and compensations

• lists:map/2 or lists:foreach/2 to list comprehension

– If the first parameter is an implicit function, a new variable is created
in the list comprehension and the implicit function is called with this
variable.

– If the first parameter is an explicit function

97

∗ If it has only one clause without pattern matching and guards

· If it has only one body the body is copied into the head of
the list comprehension.

· If it has more then one body, a begin..end expression is
created.

∗ If it has more then one clause or one clause with pattern matching
or with guards, a case expression is created in the head of the
list comprehension. The application of the case is a new variable,
and the branches of the case are the clauses of the function.

– If the first parameter is anything else, an application is created for it
in the head of the list comprehension.

• lists:filter/2 to list comprehension

– If the first parameter is an implicit function, a new variable is created
in the list comprehension and the implicit function is called with this
variable.

– If the first parameter is an explicit function

∗ If the function has one clause and the function has no pattern
matching and no guards and the body returns a boolean value

· If the function has only one body then it is inserted into the
list comprehension as filter(s).

· If the function has more then one body, then the bodies are
inserted into the list comprehension in a begin..end structure.

∗ If the function has two clauses and the second body has no pat-
tern matching and no guards and returns constantly false

· If the first clause has pattern matching, it is used in the
generator.

· If the first clause has guards, they are are inserted into the
list comprehension as filters.

· If the first clause has only one body which returns boolean
value, it is inserted into the list comprehension as filter(s).

· If the first clause has more then one body, then the bodies are
inserted into the list comprehension in a begin..end structure.

∗ If the function has more then two clauses it is transformed into
a case structure.

– If the first parameter is everything else it is inserted into the list
comprehension as an application.

• list comprehension to lists:map/2 and/or lists:filter/2

– Building the lists:filter/2

∗ The filters are inserted a function expressions body.

98

∗ If the generator has pattern matching then the created function
expression will have two clauses where the first clause has the
pattern matching the second clause is constantly false.

∗ If no filters and no pattern matching occurs then no lists:filter/2
is created.

– Building the lists:map/2

∗ If the head and the pattern of the list comprehension are equals,
no lists:map/2 is created.

∗ Else a fun expression is created with the list comprehensions
pattern and the list comprehensions head as body.

8.22 Reorder function parameters

The order of a function’s arguments is a small, aesthetic aspect of a program.
Swapping arguments can improve the readability of the program, and it can
be used as a preparation for another refactoring, eg. to create a tuple from
arguments that aren’t next to each other.

The idea is illustrated by the following simple example (see Fig. 30), where
a function’s three arguments are reversed. To maintain the meaning of the
program, every call of the function must be modified: the order of expressions
that provide actual parameters must be reversed too.

Reverse argument order
sum(A,B,C) ->

A+B+C.

caller() ->

sum(1, 2, 3).

→

Result of reversing
sum(C,B,A) ->

A+B+C.

caller() ->

sum(3, 2, 1).

Figure 30: Simple argument reordering.

This refactoring can be carried out in almost every case without any prob-
lems, only dynamic function calls put limits to its applicability. Within the
bounds of static analysis, every parameter reordering can be compensated at
the place of function calls.

8.22.1 Usage in Emacs

• Add the file that contains the function to be reordered to the database
(C-c C-r a).

• Position the cursor over the name of the function in any clause of the
function definition.

• Call the refactoring from the menu or with C-c C-r f o.

• Type the new order of the function arguments.

99

8.22.2 Side conditions

• When a function application has an argument with side effects, the trans-
formation may only be carried out after a warning that the order of side
effects most probably will change, which may change the way the program
works.

• When the given order is not legal, meaning it does not contain all of
argument indices, the transformation starts an interaction to ask for a
new order.

8.22.3 Transformation steps and compensations

1. Change the order of patterns in every clause’s parameter list in the func-
tion according to the given new order.

2. For every static call of the function, change the order of the expressions
that provide the actual parameters to the call according to the given order
(obviously in all modules).

3. Every implicit function expression is expanded to the corresponding ex-
plicit expression which contains a static call to the function; this function
call is then updated as described in the previous case.

4. For every call of the function that provides the arguments as a list, insert
a compensating function expression that changes the order of the elements
in the list according to the given new order.

8.23 Generate function specification

The “generate function specification” transformation calculates the specification
of the selected function and insert the -spec directive in front of the function.

Fun

j(X, ok) ->

X + 2.

→

Specification added
-spec(j(float()|int(),atom())

->float()|int())

j(X, ok) ->

X + 2.

Figure 31: Inserting specification for function f

8.23.1 Usage in Emacs

• Add the file that contains the variable to the database (C-c C-r a).

• Position the cursor over the function definition..

• Call the refactoring from the menu or with C-c C-r x g s.

100

8.23.2 Side conditions

There is no side condition to use this transformation.

8.23.3 Transformation steps and compensations

1. Calculates the specification of the function.

2. Inserts the specification.

8.24 Upgrade interface: regexp→re

This transformation upgrades the calls of the old regular expression module
regexp to the new re module. The transformation is based on a generic interface
upgrade module, which is invoked with the right structural and semantic change
descriptors.

Reverse argument order
case regexp:match(String, RE) of

{error, Reason} -> throw("Error: " ++ lists:flatten(

regexp:format_error(Reason)));

{match, 1, Len} -> Len;

{match, St, Len} -> use(St, Len);

nomatch -> ok

end

↓
Result

try re:run(String, RE, [{capture, first}]) of

{match, [{0, Len}]} -> Len; % [{1-1, Len}] works too

{match, [{St, Len}]} -> use(St+1, Len);

nomatch -> ok

catch

error:badarg -> throw("Error: " ++ lists:flatten(

"Bad regular expression"))

end

Figure 32: An example of upgrading regexp interface.

8.24.1 Usage in Emacs

• Add the file that to the database (C-c C-r a).

• Call the refactoring from the menu or with C-c C-r u i.

101

8.24.2 Side conditions

• Patterns belong to applications to be updated should match at least one
of the patterns written in the change descriptors.

8.24.3 Transformation steps and compensations

1. Updating the function application:

• Modifying the called function’s identifier
regexp:match ->re:run

• Matching the old function arguments and creating the new argument
list
(String, RE) -> (String, RE, [capture, first])

2. Finding the patterns to be updated and performing on them the matching
and the replacing. Furthermore, applying the correction functions on the
variable bindings or/and usages.
Pattern: match, 1, Len -> match, [0, Len]

Expression: use(St, Len) -> use(St+1, Len)

3. Turning the case expression to a try expression and moving error pattern
to the catch block (error:badarg is moved to a catch block after we
changed case expression to try expression).

102

9 Module clustering

9.1 The Emacs interface for clustering

There is a user interface to run clustering in Emacs. In order to use the Refac-
toring Tool for running clustering algorithms you should choose the type of
clustering from the “RefactorErl Menu”:

• Agglomerative module clustering

• Genetic module clustering

• Function clustering

After choosing the corresponding clustering type you have to fill out the
parameter form and then press ”Submit”. The result of the clustering appears
in a new buffer.

The following list contains the available options of the agglomerative algo-
rithm: (These options can change dynamically)

• Transform function - (undefined or zero one)

• Distance function - (call sum or weight)

• Antigravity - (0.0 ..1.0)

• Merge function - (smart)

The list of the genetic algorithm options is shown below.

• Population size - number of chromosomes in an iteration (12)

• Iterations - number of iterations in the algorithm (10)

• Mutation rate - probability of mutation (0.9)

103

• Crossover rate - probability of crossovers (0.7)

• Elite count - number of chromosomes that survive the generation (2)

• Maximum cluster size - number of clusters allowed (5)

• Maximum start-cluster-size - number of clusters at startup (2)

If the storing option was checked, the result is saved. The mnesia table
named cl ui contains three lists. The first one is the list of the options of the
algorithm. The second one is a list of the fitness numbers and the last one is a
result of the clustering.

9.2 Console interface of clustering

You can use the clustering algorithm from ri by calling the ri:cluster/0

function. You have to choose between agglomerative a genetic clustering at first
and then between function and module clustering. Based on your choice ri will
ask all of the parameters necessary for the clustering

ri:cluster()

Please choose an item from the list (blank to abort).

Please select an algorithm for clustering:

1. Agglomerative

2. Genetic

type the index of your choice: 1

Please choose an item from the list (blank to abort).

Please select an entity type for clustering:

1. function

2. module

type the index of your choice: 2

Please answer the following questions (blank to abort).

Module clustering with Agglomerative algorithm

Modules to skip(Type: none for default) none

Functions to skip(Type: none for default) none

Transform function(Select: [none,zero_one]) zero_one

Distance function(Select: [call_sum,weight]) weight

Antigravity(Type: 0.5 for default) 0.5

Merge Function(Type: smart for default) smart

Save results to database: (y/n) -> n

The result is:

104

See the direct information feed below:

Clustering results:

[[erl_syntax_lib,erl_syntax,igor,erl_tidy,epp_dodger,erl_recomment,

erl_prettypr,prettypr,erl_comment_scan]]

[[erl_syntax_lib,erl_syntax,igor,erl_tidy,epp_dodger,erl_recomment,

erl_prettypr,prettypr],

...

Fitness Numbers:

[1.0,0.9473684210526315,0.918918918918919,0.8823529411764706,

0.6896551724137931,0.5384615384615384,0.45,0.25]

105

10 Using RefactorErl in VIM

This section introduces the Vim plugin for using RefactorErl.

The command interface provides the use of ReactorErl in VIM.
In VIM, a VIM plugin has to be made to create a user interface which contains

the menus of RefactorErl as well as those commands, with the help of which
the refactorings can be run and the files loaded in the system can be handled.

10.1 Installation

To install the plugin, you can copy it to the vim plugin directory.
For global installation, the plugin directory is usually located in
/usr/share/vim/vimVersion /plugin, for local install copy the plugin to
HOME /.vim/plugin directory.

Then you should modify the refpath variable in the script to the installation
directory of RefactorErl.

Since VIM interface is based on CLI it should be properly configured. For
proper configuration of CLI, see the corresponding section.

Since the VIM interface does not cover all features of the tool, it is a good
idea to use another interface, e.g. the Erlang shell interface (ri). After starting
the refactorerl shell using the bin/referl command, the different interfaces can
connect to the shell and all of them are usable simultaneously. But once the
tool is started within VIM or from CLI you will be unable to connect to the
tool with ri.

10.2 Menu and command structure

VIM can be used both in command line and in graphical environment. The
VIM plugin of RefactorErl supports both of them. In the graphical front-end
(Fig. 33) every command can be reached from the RefactorErl menu. The
features are grouped to be easily found. These groups and the most important
tasks can be found in Table 4, and the second column of the table shows the
corresponding command to be used in non-graphical mode.

106

Figure 33: The GVim front-end of the tool

Menu item Command

Server —
Files —
Undo (One step only) Refundo

Semantic query Refsq

Function —
Introduce/Eliminate —
Move to another module —
Renaming —
Upgrade —
Help Refh

Table 4: The top level groups and menu items in GVim menu.

Server submenu The server can be started and stopped by the menus and
commands shown in Table 5. If the RefactorErl cannot be started an error
message is shown in command buffer.

107

Menu item Command

Server —
→ Start RefSta

→ Stop RefSto

Table 5: Menu items in Server submenu in GVim.

Files submenu Features dealing with files can be found in Table 6. Draw
graph makes a graphical representation of the database by creating a dot file.

Menu item Command

Files —
→ Add file Refa

→ Drop file Refd

→ Show database Refls

→ Draw Graph Refgraph

Table 6: Menu items in Files submenu in GVim.

Function submenu This submenu contains only the Reorder function pa-
rameter refactoring, this menu group has been created for future use. Menu
item and the command can be found in Table 7.

Menu item Command

Function —
→ Reorder function parameter Refof

Table 7: Menu items in Function submenu in GVim.

Introduce/Eliminate submenu In this submenu (shown in Table 8.) the
refactorings concerning introduction and elimination of certain language con-
structs can be found.

Move to another module submenu In this menu item the refactorings
concerning moving can be found. These are shown in Table 9. The modules
changed by the refactoring are not opened.

Upgrade submenu The upgrade regexp refactoring can be found in the Up-
grade submenu (shown in Table 10). This menu has been created for future use,
too.

108

Menu item Command

Introduce/Eliminate —
→ Eliminate function call Refef

→ Eliminate macro substitution Refem

→ Eliminate variable Refev

→ Eliminate fun expression Refeu

→ Introduce function Refif

→ Introduce import Refii

→ Introduce record Refir

→ Introduce variable Refiv

→ Introduce process Reffp

→ Introduce function argument Refia

→ Introduce tuple Reftf

→ Transform list comprehension Reftl

Table 8: Menu items in Introduce/Eliminate submenu in GVim.

Menu item Command

Move to another module —
→ Move function Refmf

→ Move macro Refmm

→ Move record Refmr

Table 9: Menu items in Move to another module submenu in GVim.

Menu item Command

Upgrade —
→ Upgrade regexp interface Refuir

Table 10: Menu items in Upgrade submenu in GVim.

Renaming submenu The universal renamer and the type specific renamer
refactorings are shown in Table 11.

10.3 Position based refactorings

Refactorings need either a single position or a range as a subject. In VIM,
a range can be selected only in Visual mode, but you cannot execute a single
statement while Visual mode is active, so you have to save the boundaries of
the selection by pressing F2. Then you can run the range based refactorings.
Position based refactorings are not affected by any saved ranges, they determine
the actual cursor position every time a refactoring is started.

109

Menu item Command

Renaming —
→ Universal renamer Refr

→ Rename function Refrf

→ Rename header Refrh

→ Rename macro Refrc

→ Rename module Refrm

→ Rename record Refrrd

→ Rename record field Refrrf

→ Rename variable Refrv

Table 11: Menu items in Renaming submenu in GVim.

10.4 Interaction

If any of the given argument is missing or incorrect the interface provides user
interaction to collect required data. To cancel an ongoing interaction you should
use a blank answer.

10.5 Semantic queries

Semantic queries are fully supported in VIM interface (shown in Table 4). VIM
does not support links to different sources, but the path and the location are
listed after all entity in the result. This filepath can be copied and pasted after
an open command (:e +line filepath).

110

11 Using RefactorErl in Eclipse

RefactorErl is accessible through several user interfaces, including a collection
of shell commands as well as editor integrations. As we intend to support every
popular development environment present for Erlang, we are going to cover not
only Emacs and XEmacs, but Eclipse as well.

ErlIDE is an Eclipse-based development environment, which aims to assist
programming of large scale Erlang applications. In order to integrate Refactor-
Erl into Eclipse, we are engaged in creating an Eclipse plugin based on ErlIDE,
which can enable access to all the functionality provided by RefactorErl, whilst
utilising ErlIDE features as well. A prototype of the Eclipse plugin is already
available.

11.1 Installation

11.1.1 Software requirements

• The current version of RefactorErl is available at
http://plc.inf.elte.hu/erlang/dl/.

• The plugin is being developed and tested in Eclipse 3.5.2. (It likely
works with newer versions as well.)

• This user interface is built upon ErlIDE, therefore it is required to have it
with Eclipse. Inasmuch as the main structure of ErlIDE has been changed
in its version v0.11.6.201107010651, it is necessary to get the latest
version from http://erlide.org/.

• Finally, you can download the plugin itself from the RefactorErl home-
page.

11.1.2 Deployment

To install this plugin you need to download the source code from the home
page of the RefactorErl (http://plc.inf.elte.hu/erlang/dl). In order to
generate the binaryes of the plugin you can compile it using ant or the compiler
of Eclipse. Finally you have to copy the generated jar files into your Eclipse
plugin directory. In Eclipse 3.5.x:

<user home>/.eclipse/org.eclipse.platform_3.5.0_155965261/plugin

11.1.3 Compiling the plugin in Eclipse

1. Select the location of the extension’s source code as your current workspace.

2. Import the source code directories as a project.

(a) In Package explorer tab (default on the left side) click the Import
button from the popup menu.

111

(b) Select General/Existing Projects into workspace.

(c) You need to select your workspace’s root.

(d) If everything is correct you will see an refactorerl.ui.core entry
beneath Projects label in the list.

3. Open plugin.xml file from the Package explorer tab. After click the
Overview button.

4. Click the Export wizard button. A new window pops up, where the output
directory has to be adjusted.

5. The generated jar has to be copied to the plugin directory (see: Deploy-
ment section). Finally (re)start Eclipse development environment.

11.1.4 Compile plugin using Ant

The source package contains a build.xml file, where these 2 properties have to
be adjusted:

eclipse home: the installation directory of Eclipse (default in Debian based
systems: /usr/lib/eclipse).

eclipse plugin: the user’s local Eclipse configuration directory, where the in-
stalled plugins are too. (In Eclipse 3.5.x:
/home/<user>/.eclipse/org.eclipse.platform 3.5.0 155965261).

If the plugin is compiled using ant, the RefactorErl’s Eclipse plugin imme-
diately can be used after (re)started the development environment. To do that,
just execute the beneath command:

ant jar

11.1.5 Configuration

The plugin, in order to be able to access RefactorErl, has to be set up before the
first usage. For the configuration dialog, go to Window/Preferences/RefactorErl
(Figure 34).

Start background process automatically If set, the plugin launches a new
instance of the tool, otherwise an already running RefactorErl process will
be used.

RefactorErl directory The installation directory of the tool.

Working directory A temporary directory, used to store the configuration
files of RefactorErl. It is assumed to be a writable directory.

Waiting time This parameter represents the waiting time (in seconds) after
starting RefactorErl process (has to be set to greater than 1). The slower
access is possible to Erlang nodes, the greater value is suggested.

112

Figure 34: Preferences window

Synchronize workspace automatically then model changed If a source
file has been changed, the extension automatically updates its inner rep-
resentation within the tool.

Reset database before full synchronization Resets the database and erases
its contents in the case of a full synchronisation. The use of this feature
is recommended for RefactorErl developers only.

11.2 Database management

The Eclipse extension supports every database management functionality that
is available in the RefactorErl tool. These can be executed from the top menu:

• Add file,

• Drop file,

• Reset database,

• Load directory,

• Undo (one step only).

You can get a list of the database contents by clicking on
RefactorErl/Files/Database contents. A new tab, called Database content pops
up (Figure 35), showing the modules having been loaded into RefactorErl. Also,
you can select and drop modules from the tool database, and you can open files
for editing.

11.3 Executing refactoring transformations

The Eclipse extension supports all the 24 refactorings that are currently avail-
able in RefactorErl. In order to execute a transformation, the user has to select

113

Figure 35: Database contents window

it from the menu and the plugin gives a general interface for customising the
transformation.

• The most refactorings require not only a selected range in the source code,
but need some additional parameters (e.g. a new function name). At the
beginning of the transformation, an input window pops up (Figure 36)
where the user can adjust each parameter of the transformation.

• In the case of invalid inputs (e.g. the function name is already in use) the
tool gives the opportunity to correct the input (Figure 37) or to cancel
the transformation.

• If the transformation is performable, the estimated result appears in a
window (Figure 38), where the user can commit or cancel the modifica-
tions.

• If a refactoring is cancelled or a fatal error occurs during a refactoring, a
window pops up (Figure 39), where the cause of the failure is described.

Figure 36: Rename function refactoring

114

Figure 37: Refactoring interaction window

Figure 38: Refactoring result window

11.4 Executing semantic queries

RefactorErl gives support for querying various syntactic and semantic infor-
mation through our semantic query language. We have created an interface
for executing semantic queries within Eclipse, which works very similarly as in
Emacs.

The interface dialog is shown on Figure 40). To open such a query tab,
just click on RefactorErl/Semantic query. It gives an input field for entering
queries and also draws a list showing query results in tree structure. If a leaf
gets selected, the plugin opens the corresponding file and highlights the queried
entity.

115

Figure 39: Aborted refactoring window

Figure 40: Semantic query window

11.5 Clustering

The RefactorErl tool provides a feature for reorganising the structure of the
software, called clustering. It determines semantic dependencies among the
modules and functions and makes suggestion to the developer how to repar-
tition the software: blocks of modules, headers etc. As the RefactorErl tool,
the Eclipse plugin supports the clustering on different entities like functions or
modules. Although the module clustering can be executed using both genetic
and agglomerative algorithms, the function clustering supports only the former
one.

116

To execute a clustering algorithm, you should select either of them from the
top menu (e.g: RefactorErl/Module/Genetic). Every clustering method has the
same input window, where you can adjust the parameters of the algorithm. (It’s
the usage and the required parameters of the different methods are detailed in
Section 9.) When the calculation has been finished, a new window pops up with
the results of the clustering algorithm.

12 Supporting undo/redo mechanism in Emacs

RefactorErl had an undo operation for refactorings, but with this method could
you lose some modifications. Namely if the you edit the text after a refactoring,
then undo the changes, all changes since the last refactoring were lost. This
undo was one step only, but it could be extended to more steps. However, if we
extend this undo, at refactoring undo there can arise conflicts among changes
of editing and the transformations - and also among two transformations -, but
refactoring undo should handle these conflicts, and it must be as complete as
possible. In this section we introduce a new undo/redo mechanism for the tool
integrated in Emacs.

12.1 Installation

The new undo mechanism is disabled by default, to enable it, we need additional
software components. This extended undo is implemented by a stand alone
Haskell program, so we need ghci Haskell Compiler and cabal packaging system,
that makes easier the installation of the required packages, modules. The Haskell
compiler can be downloaded from the website
http://www.haskell.org/ghc/download. Cabal is available at
http://www.haskell.org/cabal/download.html or on Linux systems with cabal-
install package. The files of this component can be found in lib/referl ui direc-
tory within the tool under emacs-undo. In this directory you have to run

make

for compiling the source. After installing these components the load-path in
Emacs has to be set to the new emacs-undo directory instead of emacs.

12.2 Usage

The undo (redo) function is available in the Refactor menu with Undo (Redo)
menu item (see Figure 41). Calling the undo operation the program undoes the
last change in the current file. Case refactoring the modifications will be rejected
in every affected file, but in some cases can conflits arise. When you edit an
affected file, or make one another refactoring, the system checks, if the second
change affects the refactored area in the file. If the changes are overlapped, the
undo reverts also this change, otherwise only the first one, and you get a merged
state of the file. At more complex changes can also more changes get reversed.
In both cases the changes can be redone until a newer modification.

117

http://www.haskell.org/ghc/download
http://www.haskell.org/cabal/download.html

Figure 41: undo

12.3 Examples of behaviour

We give two examples, for showing the behaviour of the merging algorithm of
the conflicts.

Example 1 (Figure 42)

1. we move the pzip function from module from to module xlists

2. we edit the module xlists after refactoring in area, that is not affected by
refactoring (flatsort)

3. then we undo the refactoring in the module from: merge is successful, the
edited text is unchanged

Example 2 (Figure 43)

1. we move the pzip function from module from to module xlists

2. we edit the module xlists after refactoring in area, that is affected by
refactoring (pzip)

3. then we undo the refactoring in the module from: conflict arises, the
change by editing is rejected

118

from.erl(0)
-module(from).

-export([print/1,pzip/1]).

print(Pairs) ->

io:format(

"~p~n",

pzip(Pairs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

xlists.erl(0)
-module(xlists).

-export([flatsort/1]).

flatsort(Xs) ->

lists:usort(

lists:flatten(Xs)).

→

from.erl(1)
-module(from).

-export([print/1]).

print(Pairs) ->

io:format(

"~p~n",

xlists:pzip(Pairs)).

xlists.erl(1)
-module(xlists).

-export([flatsort/1]).

-export([pzip/1]).

flatsort(Xs) ->

lists:usort(

lists:flatten(Xs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

→

from.erl(2)
-module(from).

-export([print/1]).

print(Pairs) ->

io:format(

"~p~n",

xlists:pzip(Pairs)).

xlists.erl(2)
-module(xlists).

-export([flatsort/1]).

-export([pzip/1]).

flatsort(Xs) -> lists:usort(

lists:flatten(Xs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

→

from.erl(3)
-module(from).

-export([print/1,pzip/1]).

print(Pairs) ->

io:format(

"~p~n",

pzip(Pairs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

xlists.erl(3)
-module(xlists).

-export([flatsort/1]).

flatsort(Xs) -> lists:usort(

lists:flatten(Xs)).

Figure 42: Moving function, editing (merge)

119

from.erl(0)
-module(from).

-export([print/1,pzip/1]).

print(Pairs) ->

io:format(

"~p~n",

pzip(Pairs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

xlists.erl(0)
-module(xlists).

-export([flatsort/1]).

flatsort(Xs) ->

lists:usort(

lists:flatten(Xs)).

→

from.erl(1)
-module(from).

-export([print/1]).

print(Pairs) ->

io:format(

"~p~n",

xlists:pzip(Pairs)).

xlists.erl(1)
-module(xlists).

-export([flatsort/1]).

-export([pzip/1]).

flatsort(Xs) ->

lists:usort(

lists:flatten(Xs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

→

from.erl(2)
-module(from).

-export([print/1]).

print(Pairs) ->

io:format(

"~p~n",

xlists:pzip(Pairs)).

xlists.erl(2)
-module(xlists).

-export([flatsort/1]).

-export([pzip/1]).

flatsort(Xs) ->

lists:usort(

lists:flatten(Xs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) -> [].

→

from.erl(3)
-module(from).

-export([print/1,pzip/1]).

print(Pairs) ->

io:format(

"~p~n",

pzip(Pairs)).

pzip([A,B|Rest]) ->

[{A,B}|pzip(Rest)];

pzip(_) ->

[].

xlists.erl(3)
-module(xlists).

-export([flatsort/1]).

flatsort(Xs) ->

lists:usort(

lists:flatten(Xs)).

Figure 43: Moving function, editing (conflict)

120

	Installation and configuration
	Required software
	Compilation
	User interfaces

	Using RefactorErl from the console
	General usage
	Module and function dependencies.
	Interface layers
	Server management command list
	Running dynamic call analysis
	Transformation command list
	Scriptable RefactorErl interface

	Using RefactorErl in the command line
	Web interface
	Installation
	Shutting down

	Old web interface for semantic queries
	Installation
	Starting and stopping the web server
	Usage

	Querying semantic and syntactic information
	Metric queries
	Metric analyser mode
	Semantic queries
	Metric queries embedded into semantic queries

	Basic usage in Emacs/XEmacs
	Configuration in XEmacs/Emacs.
	RefactorErl mode
	The ``Refactor'' menu

	Using refactorings
	Rename function
	Rename header
	Rename macro
	Rename module
	Rename record
	Rename record field
	Rename variable
	Move function
	Move macro
	Move record
	Eliminate function call
	Eliminate macro substitution
	Eliminate fun expression
	Eliminate variable
	Introduce function
	Introduce import
	Introduce function argument
	Introduce record
	Introduce tuple
	Introduce variable
	Transform list comprehension
	Reorder function parameters
	Generate function specification
	Upgrade interface: regexpre

	Module clustering
	The Emacs interface for clustering
	Console interface of clustering

	Using RefactorErl in VIM
	Installation
	Menu and command structure
	Position based refactorings
	Interaction
	Semantic queries

	Using RefactorErl in Eclipse
	Installation
	Database management
	Executing refactoring transformations
	Executing semantic queries
	Clustering

	Supporting undo/redo mechanism in Emacs
	Installation
	Usage
	Examples of behaviour

